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» Multicore architectures: new opportunity to test the
scheduling strategies designed in the ROMA team.

» Our trademark: efficient scheduling on heterogeneous
platforms

» Most multicore architecture are homogeneous, regular
» Need for tailored algorithms (linear algebra,. . .)
» Emerging heterogeneous multicore:

» Dedicated processing units on GPUs
> Mixed system: processor + accelerator

» This study: steady-state scheduling on CELL (bounded
heterogeneity) to demonstrate the usefulness of complex
(static) scheduling techniques
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Introduction: Steady-state Scheduling

Rationale:
» A pipelined application:
» Simple chain
» More complex application
(Directed Acyclic Graph)

» Objective: optimize the throughput
of the application
(number of input files treated per
seconds)

» Today: simple case where each
task has to be mapped on one
single resource
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» 128-bit SIMD instruction set
» Local store 256KB
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Platform modeling

Simple CELL modeling:

» 1 PPE and 8 SPE: 9 processing elements P, ..., Py, with
unrelated speed,

» Each processing element access the communication bus with a
(bidirectional) bandwidth b = (25GB/s) ,

» The bus is able to route all concurrent communications
without contention (in a first step),
» Due to the limited size of the DMA stack on each SPE:

» Each SPE can perform at most 16 simultaneous DMA
operations,

» The PPE can perform at most 8 simultaneous DMA
operations to/from a given SPE.

» Linear cost communication model:
a data of size S is sent/received in time S/b
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Application modeling

Application is described by a directed
acyclic graph:
» Tasks T1,..., T,

> Processing time of task T, on P; is
t,'(k),
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Application modeling

Application is described by a directed
acyclic graph:
» Tasks T1,..., T,
» Processing time of task Ty, on P; is
t,'(k),
> If there is a dependency T, — Ty,

datay ; is the size of the file
produced by Ty and needed by T,

» If Ty is an input task, it reads ready bytes from main memory,

» If Ty is an output task, it writes write, bytes to main memory,
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Target application: any DAG

» Today, we will focus on three random task graphs:
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Target application: any DAG

» Today, we will focus on three random task graphs:

And a simple chain graph (50 tasks)

9/ 28
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Mapping the Application
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How to compute an optimal mapping

v

Ojective: maximize throughput p

v

Method: write a linear program gathering constraints on the
mapping

v

Binary variables: o} =

« _ J1 if Ty is mapped on P;
0 otherwise

v

Other useful binary variables: ﬂfd’.l =1ifffile T, > T;is
transfered from P; to P;
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Constraints 1/2

On the application structure:

» Each task is mapped on a processor:
VT Y af=1
i

» Given a dependency Ty — T;, the processor computing T;
must receive the corresponding file:

(k1) € E\¥P;, Y Bl > af

1

» Given a dependency Ty — T, only the processor computing
Tk can send the corresponding file:

(k1) € EVP, Y B < ak

J
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Constraints 2/2

On the achievable throughput p =1/T:
» On a given processor, all tasks must be completed within T

VP, Y af xti(k)<T
k
» All incoming communications must be completed within T
1 Y
VP;, E(Zaj‘ X ready + ZZﬁ,J X datak7,) <T
K P
» All outgoing communications must be completed within T

1 . kI
VP, b(%:af( X writey + ;Zﬁi’j X datak,/) <T
J i

+ constraints on the number of incoming/outgoing
communications to respect the DMA requirements

+ constraints on the available memory on SPE e



Optimal mapping computation

v

Linear program with the objective of minimizing T

v

Integer (binary) variables: Mixed Integer Programming

v

NP-complete problem

v

Efficient solvers exist with short running time

» for small-size problems
» or when an approximate solution is searched

v

We use CPLEX, and look for an approximate solution (5% of
the optimal throughput is good enough)
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Practical Steady-State on CELL
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Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

> min_period; = Maxmeprec/(Min_period,,) + peek; + 2

» min_buff; ; = min_period; — min_period;

peek;

min_period,;

min-buff;

min_buff;;

peeky.

peek;

min_period; min_period,

min_buff;; =min_period,
— min_period,

min_buff;,

min_buff,

peek;

min_period; = MaX e prec/(min_period,,) + peek + 2
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Preprocessing of the schedule
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Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

peek; =0
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min_buff;, =5

min_buff;; =3

peeky =3

peek; = 1

min_period; = 3 min_period, =5

min_buff;; = 9

min_buff, , = 4

peek; =2

min_period, = 9

16/ 28



State machine of the framework

Two main phases: Computation and Communication
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Experimental setup

» Linear-Programming: 5% from optimal to reduce compute
time

» GREEDYMEM: Simple greedy heuristics balancing memory
footprint across PEs.
» Tasks are processed in topological order.
» Valid SPE with the least loaded memory is selected.

» GREEDYCPU: Simple greedy heuristics balancing compute
load across PEs.

» Tasks are processed in topological order.
» Least loaded SPE is selected, provided that it has enough free
memory.
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Reaching steady state
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95% of the theoretical throughput is achieved after 1000 periods
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Experimental results
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Experimental results

Graph 3: 50 tasks deep chain graph
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Results are obtained over 5000 periods, 3x speedup using 8 SPEs.
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Experimental results

We let the communication to computation ratio of each graph vary
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Communication to computation ratio

Results are obtained over 10000 periods.
The heavier communication are, the harder it is to achieve theoretical
throughput...

... but increasing the number of periods helps a lot.
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Feedback on our approach

» We designed a realistic and yet tractable model of the Cell
processor.

» Our framework allowed us to test our scheduling strategy, and
to compare it to simpler heuristic strategies.

» We have shown that :
» 95% of the throughput predicted by the linear program,

» Good and scalable speedup when using up to 8 SPEs,
» Clearly outperforms simple heuristics

Scheduling a complex application on a heterogeneous multicore
processor is a challenging task

Scheduling tools can help to achieve good performance.
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Feedback on Cell programming

» Multilevel heterogeneity:

» 32 bits SPEs vs 64 bits PPE architectures

» Different communication mechanism and constraints

» Non trivial initialization phase

» Varying data structure sizes (32/64bits)

» Runtime memory allocation
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On-going and Future work

> Better communication modeling

» |s linear cost model relevant ?
» Contention on concurrent DMA operations ?

» Larger platforms

» Using multiple CELL processors
» CELL + other type of processing units ?
» Work on communication modeling

» Design scheduling heuristics
» MIP is costly

28/ 28
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