Scheduling complex streaming applications on
the Cell processor

Mathias Jacquelin,

joint work with Matthieu Gallet and Loris Marchal

INRIA ROMA project-team
LIP (ENS-Lyon, CNRS, INRIA)

Ecole Normale Supérieure de Lyon, France

Workshop on Multithreaded Architectures and Applications,
Atlanta, April 23, 2010.

1/ 28

Qutline

Introduction
Steady-state scheduling
CELL
Platform and Application Modeling
Mapping the Application
Practical Steady-State on CELL
Preprocessing of the schedule
State machine of the framework

Experimental results

Conclusion and Future works

2/ 28

Motivation

» Multicore architectures: new opportunity to test the
scheduling strategies designed in the ROMA team.

» Our trademark: efficient scheduling on heterogeneous
platforms

3/ 28

Motivation

» Multicore architectures: new opportunity to test the
scheduling strategies designed in the ROMA team.

» Our trademark: efficient scheduling on heterogeneous
platforms

» Most multicore architecture are homogeneous, regular
» Need for tailored algorithms (linear algebra,. . .)
» Emerging heterogeneous multicore:

» Dedicated processing units on GPUs
> Mixed system: processor + accelerator

3/ 28

Motivation

» Multicore architectures: new opportunity to test the
scheduling strategies designed in the ROMA team.

» Our trademark: efficient scheduling on heterogeneous
platforms

» Most multicore architecture are homogeneous, regular
» Need for tailored algorithms (linear algebra,. . .)
» Emerging heterogeneous multicore:

» Dedicated processing units on GPUs
> Mixed system: processor + accelerator

» This study: steady-state scheduling on CELL (bounded
heterogeneity) to demonstrate the usefulness of complex
(static) scheduling techniques

3/ 28

Introduction: Steady-state Scheduling

Rationale:
» A pipelined application:

4/ 28

Introduction: Steady-state Scheduling

Rationale:
» A pipelined application:
» Simple chain

4/ 28

Introduction: Steady-state Scheduling

Rationale:
» A pipelined application:
» Simple chain

» More complex application
(Directed Acyclic Graph)

4/ 28

Introduction: Steady-state Scheduling

Rationale:
» A pipelined application:
» Simple chain

» More complex application
(Directed Acyclic Graph)

» Objective: optimize the throughput
of the application
(number of input files treated per
seconds)

4/ 28

Introduction: Steady-state Scheduling

Rationale:
» A pipelined application:
» Simple chain
» More complex application
(Directed Acyclic Graph)

» Objective: optimize the throughput
of the application
(number of input files treated per
seconds)

» Today: simple case where each
task has to be mapped on one
single resource

4/ 28

CELL brief introduction

» Multicore heterogeneous processor

» Accelerator extension to Power architecture

5/ 28

CELL brief introduction

» Multicore heterogeneous processor

» Accelerator extension to Power architecture

SPEg SPE; SPE; SPEg

L

SPEs SPE,4 SPE, SPE3

=
]

5/ 28

CELL brief introduction

» Multicore heterogeneous processor

» Accelerator extension to Power architecture

SPEg SPE; SPE; SPEg

L

SPEs SPE,4 SPE, SPE3

=
]

» 1 PPE core
» VMX unit
» L1, L2 cache

» 2 way SMT 5/ 28

CELL brief introduction

» Multicore heterogeneous processor

» Accelerator extension to Power architecture

SPEg SPE; SPE; SPEg

i

SPEs SPE,4 SPE, SPE3

=
]

» 8 SPEs

» 128-bit SIMD instruction set
» Local store 256KB
» Dedicated Asynchronous DMA engine 5/ 28

CELL brief introduction

» Multicore heterogeneous processor

» Accelerator extension to Power architecture

SPEg SPE; SPE; SPEg

L

SPEs SPE,4 SPE, SPE3

=
]

5/ 28

CELL brief introduction

» Multicore heterogeneous processor

» Accelerator extension to Power architecture

SPEg SPE; SPE; SPEg

i

SPEs SPE,4 SPE, SPE3

MEMORY

» Element Interconnect Bus (EIB)
» 200 GB/s bandwidth

5/ 28

CELL brief introduction

» Multicore heterogeneous processor

» Accelerator extension to Power architecture

SPEg SPE; SPE; SPEg

il

SPEs SPE,4 SPE, SPE3

=
il

» 25 GB/s bandwidth

5/ 28

QOutline

Platform and Application Modeling

6/ 28

Platform modeling

Simple CELL modeling:

» 1 PPE and 8 SPE: 9 processing elements P, ..., Py, with
unrelated speed,

» Each processing element access the communication bus with a
(bidirectional) bandwidth b = (25GB/s) ,

» The bus is able to route all concurrent communications
without contention (in a first step),
» Due to the limited size of the DMA stack on each SPE:

» Each SPE can perform at most 16 simultaneous DMA
operations,

» The PPE can perform at most 8 simultaneous DMA
operations to/from a given SPE.

» Linear cost communication model:
a data of size S is sent/received in time S/b

7/ 28

Application modeling

Application is described by a directed
acyclic graph:
» Tasks T1,..., T,

> Processing time of task T, on P; is
t,'(k),

8/ 28

Application modeling

Application is described by a directed
acyclic graph:
» Tasks T1,..., T,
» Processing time of task Ty, on P; is
t,'(k),
> If there is a dependency T, — Ty,

datay ; is the size of the file
produced by Ty and needed by T,

8/ 28

Application modeling

Application is described by a directed
acyclic graph:
» Tasks T1,..., T,
» Processing time of task Ty, on P; is
t,'(k),
> If there is a dependency T, — Ty,

datay ; is the size of the file
produced by Ty and needed by T,

» If Ty is an input task, it reads ready bytes from main memory,

» If Ty is an output task, it writes write, bytes to main memory,

8/ 28

Target application: any DAG

» Today, we will focus on three random task graphs:

9/ 28

Target application: any DAG

» Today, we will focus on three random task graphs:

9/ 28

Target application: any DAG

» Today, we will focus on three random task graphs:

9/ 28

Target application: any DAG

» Today, we will focus on three random task graphs:

And a simple chain graph (50 tasks)

9/ 28

QOutline

Mapping the Application

10/ 28

How to compute an optimal mapping

v

Ojective: maximize throughput p

v

Method: write a linear program gathering constraints on the
mapping

v

Binary variables: o} =

« _ J1 if Ty is mapped on P;
0 otherwise

v

Other useful binary variables: ﬂfd’.l =1ifffile T, > T;is
transfered from P; to P;

11/ 28

Constraints 1/2

On the application structure:

» Each task is mapped on a processor:
VT Y af=1
i

» Given a dependency Ty — T;, the processor computing T;
must receive the corresponding file:

(k1) € E\¥P;, Y Bl > af

1

» Given a dependency Ty — T, only the processor computing
Tk can send the corresponding file:

(k1) € EVP, Y B < ak

J

12/ 28

Constraints 2/2

On the achievable throughput p =1/T:
» On a given processor, all tasks must be completed within T

VP, Y af xti(k)<T
k
» All incoming communications must be completed within T
1 Y
VP;, E(Zaj‘ X ready + ZZﬁ,J X datak7,) <T
K P
» All outgoing communications must be completed within T

1 . kI
VP, b(%:af(X writey + ;Zﬁi’j X datak,/) <T
J i

+ constraints on the number of incoming/outgoing
communications to respect the DMA requirements

+ constraints on the available memory on SPE e

Optimal mapping computation

v

Linear program with the objective of minimizing T

v

Integer (binary) variables: Mixed Integer Programming

v

NP-complete problem

v

Efficient solvers exist with short running time

» for small-size problems
» or when an approximate solution is searched

v

We use CPLEX, and look for an approximate solution (5% of
the optimal throughput is good enough)

14/ 28

QOutline

Practical Steady-State on CELL

15/ 28

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

> min_period; = Maxmeprec/(Min_period,,) + peek; + 2

» min_buff; ; = min_period; — min_period;

peek;

min_period,;

min-buff;

min_buff;;

peeky.

peek;

min_period; min_period,

min_buff;; =min_period,
— min_period,

min_buff;,

min_buff,

peek;

min_period; = MaX e prec/(min_period,,) + peek + 2

16/ 28

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

peek; =0

min_period; = 0

min_buff;, =5

min_buff;; =3

peeky =3

peek; = 1

min_period; = 3 min_period, =5

min_buff;; = 9

min_buff;; = 6
min_buff, , = 4

min_period, = 9

16/ 28

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

period = 0 peek; =0

min_period; = 0

min_buff;, =5

min_buff;; =3

peeky =3

peek; = 1

min_period; = 3 min_period, =5

min_buff;; = 9

min_buff;; = 6
min_buff, , = 4

min_period, = 9

16/ 28

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

period = 1 peek; =0

min_period; = 0

min_buff;, =5

min_buff;; =3

peek, =3

peek; = 1

min_period; = 3 min_period, =5

min_buff;; = 9

min_buff;; = 6
min_buff, , = 4

min_period, = 9

16/ 28

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

period = 2 peek; =0

min_period; = 0

min_buff;, =5

min_buff;; =3

peek, =3

peek; = 1

min_period; = 3 min_period, =5

min_buff;; = 9

min_buff;; = 6
min_buff, , = 4

min_period, = 9

16/ 28

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

period = 3 peek; =0

min_period; = 0

min_buff;, =5

min_buff;; =3

peeky =3

peek; = 1

min_period; = 3 min_period, =5

min_buff;; = 9

min_buff;; = 6
min_buff, , = 4

peek; =2

min_period, = 9

16/ 28

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

peek; =0

period = 4
min_period; = 0

min_buff;, =5

min_buff;; =3

peeky =3

peek; = 1

min_period; = 3 min_period, =5

min_buff;; = 9

min_buff, , = 4

min_period, = 9

16/ 28

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

peek; =0

period =5
min_period; = 0

min_buff;, =5

min_buff;; =3

peeky =3

peek; = 1

min_period; = 3 min_period, =5

min_buff;; = 9

min_buff, , = 4

min_period, = 9

16/ 28

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

peek; =0

period = 6
min_period; = 0

min_buff;, =5

min_buff;; =3

peeky =3

peek; = 1

min_period; = 3 min_period, =5

min_buff;; = 9

min_buff, , = 4

peek; =2

min_period, = 9

16/ 28

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

peek; =0

period =7
min_period; = 0

min_buff;, =5

min_buff;; =3

peeky =3

peek; = 1

min_period; = 3 min_period, =5

min_buff;; = 9

min_buff, , = 4

min_period, = 9

16/ 28

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

peek; =0

period = 8
min_period; =0

min_buff;, =5

min_buff;; =3

peeky =3

peek; = 1

min_period; = 3 min_period, =5

min_buff;; = 9

min_buff, , = 4

min_period, = 9

16/ 28

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

peek; =0

period =9
min_period; =0

min_buff;, =5

min_buff;; =3

peeky =3

peek; = 1

min_period; = 3 min_period, =5

min_buff;; = 9

min_buff, , = 4

peek; =2

min_period, = 9

16/ 28

State machine of the framework

Two main phases: Computation and Communication

w2
2
2

2

=4
3
Z

Wait Resources

!

Process Task

1

Signal new Data

Computation Phase

r;;444444444444444444444444444444
|
|
|
'
|
|
|
'
|
|
|
'
|
|
|
'
|
|
|
'
|
L
I
'
|
|
|
'
|
|
|
'
|

Communicate

17/ 28

State machine of the framework

Two main phases: Computation and Communication

v
2
2
2
=S
> ¢
=
3
2.

Wait Resources

!

Process Task

1

Signal new Data

Computation Phase

r;;444444444444444444444444444444
|
|
|
'
|
|
|
'
|
|
|
'
|
|
|
'
|
|
|
'
|
L
I
'
|
|
|
'
|
|
|
'
|

Communicate

17/ 28

State machine of the framework

Two main phases: Computation and Communication

‘
Wait Resources

Process Task

1

Signal new Data

Computation Phase

O e e ccoccoocmommoe =

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Lo

Communicate

17/ 28

State machine of the framework

Two main phases: Computation and Communication

w2
2
2

2

=4
3
Z

Wait Resources

]

Process Task

i

Signal new Data

Computation Phase

r;;444444444444444444444444444444
|
|
|
'
|
|
|
'
|
|
|
'
|
|
|
'
|
|
|
'
|
L
I
'
|
|
|
'
|
|
|
'
|

Communicate

17/ 28

State machine of the framework

Two main phases: Computation and Communication

w2
2
2

2

=4
3
Z

Wait Resources

!

Process Task

!

Signal new Data

Computation Phase

r;;444444444444444444444444444444
|
|
|
'
|
|
|
'
|
|
|
'
|
|
|
'
|
|
|
'
|
L
I
'
|
|
|
'
|
|
|
'
|

Communicate

17/ 28

State machine of the framework

Two main phases: Computation and Communication

No more comm.

y

Compute

For each inbound comm.

!

Watch DMA

¥
No
Check input data
3
No]
Check input buffers
v

Get Data

17/ 28

State machine of the framework

Two main phases: Computation and Communication

No more comm.

y

Compute

,,,,,,, |

For each inbound comm.

No

!

Watch DMA
¥

Check input data

¥

Check input buffers

¥

Get Data

17/ 28

State machine of the framework

Two main phases: Computation and Communication

No more comm.

y

Compute

No

For each inbound comm.

!

Watch DMA
$

Check input data

¥

Check input buffers

¥

Get Data

17/ 28

State machine of the framework

Two main phases: Computation and Communication

No more comm.

y

Compute

,,,,,,, |

For each inbound comm.

No

!

Watch DMA
1

Check input data
3

Check input buffers

¥

Get Data

17/ 28

State machine of the framework

Two main phases: Computation and Communication

No more comm.

y

Compute

No

For each inbound comm.

!

Watch DMA
¥

Check input data

3

Check input buffers
¥

Get Data

17/ 28

State machine of the framework

Two main phases: Computation and Communication

No more comm.

y

Compute

No

For each inbound comm.

!

Watch DMA
¥

Check input data

¥

Check input buffers

¥
Get Data

17/ 28

Communication between processors

Py Pu

e
Tz("l)

(D)

18/ 28

Communication between processors

Pk PL

!
Signal Data(i)
.................. T

prac

|

mfc_putb for SPEs’ outbound communications.
spe_mfcio_getb for PPEs’ outbound communications to SPEs.

memcpy for PPEs' outbound communications to main memory.

18/ 28

Communication between processors

Pk PL

i)
Signal Data(i)

.................. 740

Input buffers are available
to store data

Output buffer containing i
cannot be overwritten

T

|

mfc_putb for SPEs’ outbound communications.
spe_mfcio_getb for PPEs’ outbound communications to SPEs.

memcpy for PPEs' outbound communications to main memory.

18/ 28

Communication between processors

Pk P

Signal Data(i)
.................. T

[Output buffer containing i] Get Datai) Input lt):)lfitt'ii_:u(ﬁﬁuil‘dble

cannot be overwritten

T

|

mfc_get for SPEs' inbound communications.
spe_mfcio_put for PPEs’ inbound communications from SPEs.

memcpy for PPEs’ inbound communications from main memory.

18/ 28

Communication between processors

Pk P

Signal Data(i)
.................. T

[Output buffer containing i] Get Datai) Input lt):)lfitt'ii_:u(ﬁﬁuil‘dble

cannot be overwritten

T

|

mfc_get for SPEs' inbound communications.
spe_mfcio_put for PPEs’ inbound communications from SPEs.

memcpy for PPEs’ inbound communications from main memory.

18/ 28

Communication between processors

Pk P

i)
Signal Data(i)

.................. 740

Output buffer containing / Get Data(i) Input L;uﬁ,tt.rs. al-ﬁ g\uilable
cannot be overwritten Lo store data

T

|

mfc_putb for SPEs" acknowledgements.
spe_mfcio_getb for PPEs’ acknowledgements to SPEs.

Self acknowledgement of PPEs’ transfers from main memory.

18/ 28

Communication between processors

Pk P

Signal Data(i)
.................. T

Output buffer containing i Get Data(i) Input buﬁ‘ers. are available
cannot be overwritten to store data

- — Transfer Done(i
[Output buffer containing i] __________ (.)

can now be overwritten

T

mfc_putb for SPEs" acknowledgements.
spe_mfcio_getb for PPEs’ acknowledgements to SPEs.

Self acknowledgement of PPEs’ transfers from main memory.

18/ 28

Communication between processors

Pk

Signal Data(i)
.................. T

Output buffer containing i Get Data(i) Input buﬁ‘ers. are available
cannot be overwritten to store data

Output buffer containing
can now be overwritten

mfc_putb for SPEs" acknowledgements.
spe_mfcio_getb for PPEs’ acknowledgements to SPEs.

Self acknowledgement of PPEs’ transfers from main memory.

18/ 28

Experimental setup

» Linear-Programming: 5% from optimal to reduce compute
time

19/ 28

Experimental setup

» Linear-Programming: 5% from optimal to reduce compute
time

» GREEDYMEM: Simple greedy heuristics balancing memory
footprint across PEs.

19/ 28

Experimental setup

» Linear-Programming: 5% from optimal to reduce compute
time

» GREEDYMEM: Simple greedy heuristics balancing memory
footprint across PEs.
» Tasks are processed in topological order.

19/ 28

Experimental setup

» Linear-Programming: 5% from optimal to reduce compute
time

» GREEDYMEM: Simple greedy heuristics balancing memory
footprint across PEs.

» Tasks are processed in topological order.
» Valid SPE with the least loaded memory is selected.

19/ 28

Experimental setup

» Linear-Programming: 5% from optimal to reduce compute
time

» GREEDYMEM: Simple greedy heuristics balancing memory
footprint across PEs.
» Tasks are processed in topological order.
» Valid SPE with the least loaded memory is selected.

» GREEDYCPU: Simple greedy heuristics balancing compute
load across PEs.

19/ 28

Experimental setup

» Linear-Programming: 5% from optimal to reduce compute
time

» GREEDYMEM: Simple greedy heuristics balancing memory
footprint across PEs.

» Tasks are processed in topological order.
» Valid SPE with the least loaded memory is selected.

» GREEDYCPU: Simple greedy heuristics balancing compute
load across PEs.

» Tasks are processed in topological order.

19/ 28

Experimental setup

» Linear-Programming: 5% from optimal to reduce compute
time

» GREEDYMEM: Simple greedy heuristics balancing memory
footprint across PEs.
» Tasks are processed in topological order.
» Valid SPE with the least loaded memory is selected.

» GREEDYCPU: Simple greedy heuristics balancing compute
load across PEs.

» Tasks are processed in topological order.
» Least loaded SPE is selected, provided that it has enough free
memory.

19/ 28

Reaching steady state

40

w
a
L

w
S
1

N
o
L

=% Experimental throughput
—— Theoretical throughput

=
o
L

Throughput (instances / seconds)
S
|

=
o
L

T T T T T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of instances

95% of the theoretical throughput is achieved after 1000 periods

20/ 28

Experimental results

|| === Linear Programming
wQw GREEDYMEM
wg GREEDYCPU

Speed-up for 5000 instances

Number of SPEs
Results are obtained over 5000 periods, 2x speedup using 8 SPEs.

21/ 28

Experimental results

=~ Linear Programming
2 <| w0~ GREEDYMEM
wg GREEDYCPU

Speed-up for 5000 instances

Number of SPEs
Results are obtained over 5000 periods, 2x speedup using 8 SPEs.

22/ 28

Experimental results

Graph 3: 50 tasks deep chain graph

3 | =0~ Linear Programming
w@w GREEDYMEM
w GREEDYCPU

2.5

15 4

Speed-up for 5000 instances

Number of SPEs

Results are obtained over 5000 periods, 3x speedup using 8 SPEs.

23/ 28

Experimental results

We let the communication to computation ratio of each graph vary

1 =v- Random graph 1
~@= Random graph 2
w 3.5 «%= Random graph 3
=
3
2 34
(=3
(=3
S
S 25+
8
o
T 29
o
3
%
2 15
14

0.5 1 15 2 2.5 8 35 4 45 5

Communication to computation ratio

Results are obtained over 10000 periods.
The heavier communication are, the harder it is to achieve theoretical
throughput...

... but increasing the number of periods helps a lot.
24/ 28

QOutline

Conclusion and Future works

25/ 28

Feedback on our approach

» We designed a realistic and yet tractable model of the Cell
processor.

» Our framework allowed us to test our scheduling strategy, and
to compare it to simpler heuristic strategies.

» We have shown that :
» 95% of the throughput predicted by the linear program,

» Good and scalable speedup when using up to 8 SPEs,
» Clearly outperforms simple heuristics

Scheduling a complex application on a heterogeneous multicore
processor is a challenging task

Scheduling tools can help to achieve good performance.

26/ 28

Feedback on Cell programming

» Multilevel heterogeneity:

» 32 bits SPEs vs 64 bits PPE architectures

» Different communication mechanism and constraints

» Non trivial initialization phase

» Varying data structure sizes (32/64bits)

» Runtime memory allocation

27/ 28

On-going and Future work

> Better communication modeling

» |s linear cost model relevant ?
» Contention on concurrent DMA operations ?

» Larger platforms

» Using multiple CELL processors
» CELL + other type of processing units ?
» Work on communication modeling

» Design scheduling heuristics
» MIP is costly

28/ 28

	Introduction
	Steady-state scheduling
	CELL

	Platform and Application Modeling
	Mapping the Application
	Practical Steady-State on CELL
	Preprocessing of the schedule
	State machine of the framework
	Experimental results

	Conclusion and Future works

