Massive Streaming Data Analytics:
A Case Study with Clustering Coefficients

David Ediger, Karl Jiang, Jason Riedy and David A. Bader

Georgia Cadllege of
Tech | Computing

Computational Science and Engineering




-

Overview

e Motivation

A Framework for Massive Streaming
Data Analytics

e STINGER

* Clustering Coefficients

 Results on Cray XMT & Intel Nehalem-EP
e Conclusions

Calleg® eff
David Ediger, MTAAP 2010, Atlanta, GA Tech Cemputing 2



Data Deluge

Current data rates:

 NYSE: 1.5TB daily * 1 Gb Ethernet: 8.7TB daily at
e LHC: 41TB daily 100%, 5-6TB daily realistic

e LSST: 13TB daily  Multi-TB storage on 10GE:
300TB daily read, 90TB daily

write

Emerging Applications
Business Analytics
Social Network Analysis
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Data Deluge

Current data sets:

* NYSE: 8PB e CPU<->Memory:
e Google: >12PB - QPLHT: 2PB/day@100%
e |HC: >15PB - Power7: 8.7PB/day

e Mem:
— NCSA Blue Waters tgt: 2PB

> Even with parallelism, current
systems cannot handle more
than a few passes... per day.

—
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Our Contributions

e A new computational approach for the
analysis of complex graphs with streaming
spatio-temporal data

e STINGER

» Case study: clustering coefficients
- Bloom filters and batch updates
- 4 orders of magnitude faster than recomputation
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 Accumulate as much of the recent graph data as
possible in main memory.

Insert_lons / Pre-process_,
Deletions Sort, Reconcile
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Affected verticesl
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Change detection

“Age off” old vertices

Alter graph

Update metrics
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STINGER: A temporal graph data structure

e Semi-dense
edge list blocks
with free space

e Compactly
stores
timestamps,
types, weights

e Maps from
application IDs
to storage IDs

e Deletion by
negating IDs,
separate
compaction
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Definition of Clustering Coefficients

e Defined in terms of triplets.
o # closed triplets / # all triplets

* jj-vis a closed triplet (triangle).
* m-v-n is an open triplet.
* Locally, count those around v.

* Globally, count across entire graph.
- Multiple counting cancels (3/3=1)

e Useful for understanding topology, community structure,
and small-worldness (Watts98).
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Streaming updates to clustering coefflments

 Monitoring clustering coefficients could identify
anomalies, find forming communities, etc.

e Computations stay local. A change to edge <u, v> affects
only vertices u, v, and their neighbors.

+1

+2 +2

 Need a fast method for updating the triangle counts,
degrees when an edge is inserted or deleted.

- Dynamic data structure for edges & degrees: STINGER
- Rapid triangle count update algorithms: exact and approximate
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The Local Clustering Coefficient

number of closed triplets centered around v

number of triplets centered around v

Ziée |6 m \{ } Tu
dl,.((lv 1) lv(dl, —-1)

C, =

Where ¢, is the set of neighbors of vertex k and
d, is the degree of vertex k

We will maintain the numerator and denominator
separately.
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Algorithm for Updates

Algorithm 1 An algorithmic framework for updating local
clustering coefficients. All loops can use atomic increment
and decrement instructions to decouple iterations.

Input: Edge (u,v) to be inserted (+) or deleted (—), local
clustering coefficient numerators 7', and degrees d
Output: Updated local triangle counts 7" and degrees d
iy A R 1 i o
dy — dy £ 1
count « 0
for all = € ¢, do
if © € e, then
T = At 1
count < count £ 1
T, — T, %+ count
T, — T, £+ count

O U0 T v I B BY B
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Three Update Mechanisms

 Update local & global clustering coefficients while
edges <u, v> are inserted and deleted.

* Three approaches:

1. Exact: Explicitly count triangle changes by doubly-
nested loop.

* 0O(d,*d,), where d, is the degree of x after insertion/deletion

2. Exact: Sort one edge list, loop over other and search
with bisection.

* O((d,*+d,)log(d,)

3. Approx: Summarize one edge list with a Bloom filter.
Loop over other, check using O(1) approximate lookup.
May count too many, never too few.

e O(d,+d)
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Bloom Filters

Bit Array OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Bloom HashA(10) = 2 HashA(23) = 11
riter 0|0 0]o[o]o[o]E] o EHEY HashB(10) =10  HashB(23) =8

e Bit Array: 1 bit / vertex
 Bloom Filter: less than 1 bit / vertex
 Hash functions determine bits to set for each edge

e Probability of false positives is known (prob. of false
negatives = 0)
- Determined by length, # of hash functions, and # of elements
 Must rebuild after a deletion
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Experimental Methodology

* RMAT (ChakrabartiO4) as a graph & edge
generator.

* Generate graph with SCALE and edge factor F,
2SCALEE edges.
- SCALE 24: 17 million vertices
— Edge factors 8 to 32: 134 to 537 million edges
 Generate 1024 actions.
- Deletion chance 6.25% =1/16
- Same RMAT process, will prefer same vertices.

e Start with an exact triangle count, run individual
updates.

* For batches of updates, generate 1M actions.
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The Cray XMT

* Tolerates latency by massive multithreading.
- Hardware support for 128 threads on each processor
- Globally hashed address space
- No data cache
— Single cycle context switch
- Multiple outstanding memory requests

e Support for fine-grained,

word-level synchronization
- Full/empty bit associated with every
memory word

* Flexibly supports dynamic load balancing.

e Testing on a 128 processor XMT: 16384 threads
- 1 TB of globally shared memory

Image Source: cray.com
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The Intel ‘Nehalem-EP’

* Dual socket Intel Xeon E5530 @ 2.4 GHz

e 12 GB memory

e 8 Physical Cores, 2x SMT

* 32 GB/s per socketl  prerrmmreTramm—"

| I Shared L3 Cache: & || 1"

Image Source: intel.com
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Updating clustering coefficients one by-one

Updates per second

o

o

Brute force

Bloom filter Sorted list
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Speed-up over recomputation

64 node Cray XMT Two 4-core Nehalem E5530s

Speed up of incremental update v. recomputations
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Processors

Graph size: scale 21, edge factor 8
Brute force intersection

e Cray XMT: over 10,000x faster
* |[ntel Nehalem: over 1,000,000x faster
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Updating clustering coefficients in a batch

e Start with an exact triangle count, run individual
batched updates:
- Consider B updates at once.

- Loses some temporal resolution within a batch.
Changes to the same edge are collapsed.

e Result summary (updates per second)

Algorithm B=1 B =1000 B = 4000
Exact 90 25,100 50,100
Approx. 60 83,700 193,300

32 of 64P Cray XMT, 16M vertices, 134M edges

Georgia College of
David Ediger, MTAAP 2010, Atlanta, GA Tech © NG




Conclusions

 STINGER: efficiently handles graph traversal
and edge insertion & deletion.

* A serial stream of edges contains sufficient
parallelism for Cray XMT to obtain 550x
speed-up over edge-by-edge updates.

* Bloom filters may introduce an
approximation, but can achieve an additional
4x speed-up on the Cray XMT.
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