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Overview

• Motivation

• A Framework for Massive Streaming hello

Data Analytics

• STINGER

• Clustering Coefficients

• Results on Cray XMT & Intel Nehalem-EP

• Conclusions
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Data Deluge

• NYSE: 1.5TB daily

• LHC: 41TB daily

• LSST: 13TB daily

Current data rates:

• 1 Gb Ethernet: 8.7TB daily at 

100%, 5-6TB daily realistic

• Multi-TB storage on 10GE: 

300TB daily read, 90TB daily 

write

Emerging Applications

Business Analytics

Social Network Analysis
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Data Deluge

• NYSE: 8PB

• Google: >12PB

• LHC: >15PB

Current data sets:

 Even with parallelism, current 

systems cannot handle more 

than a few passes... per day.

• CPU<->Memory:

– QPI,HT: 2PB/day@100%

– Power7: 8.7PB/day

• Mem:

– NCSA Blue Waters tgt: 2PB
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Our Contributions

• A new computational approach for the 

analysis of complex graphs with streaming 

spatio-temporal data

• STINGER

• Case study: clustering coefficients

– Bloom filters and batch updates

– 4 orders of magnitude faster than recomputation
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Massive Streaming Data Analytics

• Accumulate as much of the recent graph data as 

possible in main memory.
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Pre-process, 

Sort, Reconcile

“Age off” old vertices

Alter graph

Update metrics

STINGER

graph

Insertions / 

Deletions

Affected vertices

Change detection



STINGER: A temporal graph data structure

• Semi-dense 

edge list blocks 

with free space

• Compactly 

stores 

timestamps, 

types, weights

• Maps from 

application IDs 

to storage IDs

• Deletion by 

negating IDs, 

separate 

compaction
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Definition of Clustering Coefficients

• Defined in terms of triplets.

• # closed triplets / # all triplets

• Useful for understanding topology, community structure,   

and small-worldness (Watts98).

• i-j-v is a closed triplet (triangle).

• m-v-n is an open triplet.

• Locally, count those around v.

• Globally, count across entire graph.

• Multiple counting cancels (3/3=1)
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Streaming updates to clustering coefficients

• Monitoring clustering coefficients could identify 
anomalies, find forming communities, etc.

• Computations stay local.  A change to edge  <u, v> affects 
only vertices u, v, and their neighbors.

• Need a fast method for updating the triangle counts, 
degrees when an edge is inserted or deleted.
– Dynamic data structure for edges & degrees: STINGER

– Rapid triangle count update algorithms: exact and approximate

+2u v
+2

+1
+1
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The Local Clustering Coefficient
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Where ek is the set of neighbors of vertex k and

dk is the degree of vertex k

We will maintain the numerator and denominator 

separately.
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Algorithm for Updates
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Three Update Mechanisms

• Update local & global clustering coefficients while 
edges <u, v> are inserted and deleted.

• Three approaches:

1. Exact: Explicitly count triangle changes by doubly-
nested loop.

• O(du * dv), where dx is the degree of x after insertion/deletion

2. Exact: Sort one edge list, loop over other and search 
with bisection.

• O((du + dv) log (du))

3. Approx: Summarize one edge list with a Bloom filter.  
Loop over other, check using O(1) approximate lookup. 
May count too many, never too few.

• O(du + dv)
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Bloom Filters

• Bit Array:  1 bit / vertex

• Bloom Filter:  less than 1 bit / vertex

• Hash functions determine bits to set for each edge

• Probability of false positives is known (prob. of false 
negatives = 0)
– Determined by length, # of hash functions, and # of elements

• Must rebuild after a deletion
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Experimental Methodology

• RMAT (Chakrabarti04) as a graph & edge 
generator.

• Generate graph with SCALE and edge factor F, 
2SCALEF edges.
– SCALE 24: 17 million vertices

– Edge factors 8 to 32: 134 to 537 million edges

• Generate 1024 actions.
– Deletion chance 6.25% = 1/16

– Same RMAT process, will prefer same vertices.

• Start with an exact triangle count, run individual 
updates.

• For batches of updates, generate 1M actions.
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The Cray XMT

• Tolerates latency by massive multithreading.

– Hardware support for 128 threads on each processor

– Globally hashed address space

– No data cache 

– Single cycle context switch

– Multiple outstanding memory requests

• Support for fine-grained, 

word-level synchronization

– Full/empty bit associated with every 

memory word

• Flexibly supports dynamic load balancing.

• Testing on a 128 processor XMT: 16384 threads

– 1 TB of globally shared memory

Image Source: cray.com
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The Intel ‘Nehalem-EP’

• Dual socket Intel Xeon E5530 @ 2.4 GHz

• 12 GB memory

• 8 Physical Cores, 2x SMT

• 32 GB/s per socket
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Image Source: intel.com
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Updating clustering coefficients one-by-one
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Speed-up over recomputation

• Cray XMT:  over 10,000x faster

• Intel Nehalem:  over 1,000,000x faster
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Updating clustering coefficients in a batch

• Start with an exact triangle count, run individual 
batched updates:

– Consider B updates at once.

– Loses some temporal resolution within a batch.  
Changes to the same edge are collapsed.

• Result summary (updates per second)

Algorithm B = 1 B = 1000 B = 4000

Exact 90 25,100 50,100

Approx. 60 83,700 193,300
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32 of 64P Cray XMT, 16M vertices, 134M edges
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Conclusions

• STINGER: efficiently handles graph traversal 

and edge insertion & deletion.

• A serial stream of edges contains sufficient 

parallelism for Cray XMT to obtain 550x 

speed-up over edge-by-edge updates.

• Bloom filters may introduce an 

approximation, but can achieve an additional 

4x speed-up on the Cray XMT.
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