
Atlanta, Georgia

TiNy Threads on
BlueGene/P: Exploring
Many-Core Parallelisms
Beyond The Traditional

OS
Handong Ye, Robert Pavel, Aaron Landwehr, Guang R. Gao
Department of Electrical & Computer Engineering
University of Delaware
2010-04-23

MTAAP’2010 1

Introduction

Modern OS based upon a sequential
execution model (the von Neumann
model).

Rapid progress of multi-core/many-
core chip technology.

Parallel Computer systems now
implemented on single chips.

MTAAP’2010 2

Introduction

Conventional OS model must adapt to the
underlying changes.

Further exploit the many levels of
parallelism.

Hardware as well as Software

We introduce a study on how to do this
adaptation for the IBM BlueGene/P multi-
core system.

MTAAP’2010 3

Outline

Introduction

Contributions

TNT on BlueGene/P

Scheduling TNT across nodes

Synchronization across nodes

TNT Distributed Shared Memory

Results

Conclusions and Future Work
MTAAP’2010 4

Contributions

Isolate traditional OS functions to a
single core of the BG/P multi-core chip.

Ported the TiNy Thread (TNT) execution
model to allow for further utilization of
BG/P compute cores.

Expanded the design framework to a
multi-chip system designed for
scalability to a large number of chips.

MTAAP’2010 5

Outline

Introduction

Contributions

TNT on BlueGene/P

Scheduling TNT across nodes

Synchronization across nodes

TNT Distributed Shared Memory

Results

Conclusions and Future Work

MTAAP’2010 6

TiNy Threads on BG/P

TiNy Threads

Lightweight, non-preemptive, threads

API similar to POSIX Threads.

Originally presented in “TiNy Threads: A Thread Virtual
Machine for the Cyclopse-64 Cellular Architecture”

Runs on IBM Cyclops64

Kernel Modifications

Alterations to the thread scheduler to allow for non-
preemption

MTAAP’2010 7

Outline

Introduction

Contributions

TNT on BlueGene/P

Scheduling TNT across nodes

Synchronization across nodes

TNT Distributed Shared Memory

Results

Conclusions and Future Work
MTAAP’2010 8

Multinode Thread Scheduler

Thread Scheduler allows TNT to run across
multiple nodes.

Requests facilitated through IBM’s Deep
Computing Messaging Framework’s RPCs.

Multiple Scheduling Algorithms

Workload Un-Aware
● Random
● Round-Robin

Workload Aware
MTAAP’2010 9

Multinode Thread
Scheduling

MTAAP’2010 10

Node A Node B

tnt_create()
…

tnt_join()

tid

…
tnt_exit()

…
tnt_join()

Outline

Introduction

Contributions

TNT on BlueGene/P

Scheduling TNT across nodes

Synchronization across nodes

TNT Distributed Shared Memory

Results

Conclusions and Future Work
MTAAP’2010 11

Synchronization

Three forms

Mutex

Thread Joining

Barrier

Similar to thread scheduling

Lock requests, Join requests, and Barrier notifications
sent to node responsible for said synchronization

MTAAP’2010 12

Multinode Thread
Scheduling

MTAAP’2010 13

Node A Node B

tid

…
tnt_exit()

tnt_join()

A

tnt_exit()

Outline

Introduction

Contributions

TNT on BlueGene/P

Scheduling TNT across nodes

Synchronization across nodes

TNT Distributed Shared Memory

Results

Conclusions and Future Work
MTAAP’2010 14

Characteristics of TDSM

Provides One-Sided access to memory distributed among nodes
through IBM’s DCMF.

Allows for virtual address manipulation

Maps distributed memory to a single virtual address space.

Allows for array indexing and memory offsets.

Scalable to a variety of applications

Size of desired global shared memory set at runtime.

Mutability

Memory allocation algorithm and memory distribution algorithm
can be easily altered and/or replaced.

MTAAP’2010 15

16

Example of TDSM

0
global

15 30 45

t dsm_read(gl obal [15] , l ocal , 20*si zeof (i nt)) ;

global[15] to global[34]

0x00040012

Node 6Node 5 Node 7

Local Buffer
0x0004004E

to
0x0004009A

Node 6: 0 to 14
and

Node 7: 0 to 4

…

Outline

Introduction

Contributions

TNT on BlueGene/P

Scheduling TNT across nodes

Synchronization across nodes

TNT Distributed Shared Memory

Results

Conclusions and Future Work
MTAAP’2010 17

Summary of Results

The performance of the TNT thread system shows comparable
speedup to that of Pthreads running on the same hardware.

The distributed shared memory operates at 95% of the
experimental peak performance of the network, with distance
between nodes not being a sensitive factor.

The cost of thread creation shows a linear relationship as the
number of threads increase.

The cost of waiting at a barrier is constant and independent of
the number of threads involved.

MTAAP’2010 18

Single-Node Thread System
Performance

Based upon Radix-2 Cooley-
Tukey algorithm with the
Kiss FFT library for the
underlying DFT.

Underlying TNT thread
model performs comparably
to POSIX standard when the
number of threads does not
exceed the number of
available processor cores.

MTAAP’2010 19

Memory System
Performance

Reads and writes of
varying sizes between one
and two nodes.

For inter-node
communications, data can
be transferred at
approximately 357 MB/s.

Kumar et al determined
experimental peak
performance on BG/P to be
374 MB/s in their ICS’08
paper.

MTAAP’2010 20

Memory System
Performance

Size of Read/Write is a
function of the number
of nodes across which
the data is distributed.

Latency linearly
increases as the
amount of data
increases, regardless of
distance between
nodes.

MTAAP’2010 21

Multinode Thread Creation
Cost

Approximately 0.2
seconds per thread

Remained effectively
constant

MTAAP’2010 22

Synchronization Costs

Performance of
barrier is effectively
a constant 0.2
seconds.

MTAAP’2010 23

Outline

Introduction

Contributions

TNT on BlueGene/P

Scheduling TNT across nodes

Synchronization across nodes

TNT Distributed Shared Memory

Results

Conclusions and Future Work
MTAAP’2010 24

Conclusions and Future
Work

Proven feasibility of system

Benefits of Execution Model-Driven
approach

Room for Improvement

Improvements to kernel

More rigorous benchmarks

Improved allocation and scheduling
algorithms

MTAAP’2010 25

Atlanta, Georgia

Thank You

MTAAP’2010 26

Bibliography

J. del Cuvillo, W. Zhu, Z. Hu, and G. R.
Gao, “Tiny threads: A thread virtual
machine for the cyclops64 cellular
architecture,” Parallel and Distributed
Processing Symposium, International,
vol. 15, p. 265b, 2005.

S. Kumar, G. Dozsa, G. Almasi et al.,
“The deep computing messaging
framework: generalized scalable
message passing on the blue gene/p
supercomputer,” in ICS ’08:
Proceedings of the 22nd annual
international conference on
Supercomputing. New York, NY, USA:
ACM, 2008, pp. 94–103.

M. Borgerding, “Kiss FFT.” December
2009,
http://sourceforge.net/projects/kissfft/.

MTAAP’2010 27

