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Introduction

Modern OS based upon a sequential 
execution model (the von Neumann 
model).

Rapid progress of multi-core/many-
core chip technology.

Parallel Computer systems now 
implemented on single chips.
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Introduction

Conventional OS model must adapt to the 
underlying changes.

Further exploit the many levels of 
parallelism.

Hardware as well as Software

We introduce a study on how to do this 
adaptation for the IBM BlueGene/P multi-
core system.
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Contributions

Isolate traditional OS functions to a 
single core of the BG/P multi-core chip.

Ported the TiNy Thread (TNT) execution 
model to allow for further utilization of 
BG/P compute cores. 

Expanded the design framework to a 
multi-chip system designed for 
scalability to a large number of chips.
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TiNy Threads on BG/P

TiNy Threads

Lightweight, non-preemptive, threads

API similar to POSIX Threads.

Originally presented in “TiNy Threads: A Thread Virtual 
Machine for the Cyclopse-64 Cellular Architecture”

Runs on IBM Cyclops64

Kernel Modifications

Alterations to the thread scheduler to allow for non-
preemption
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Multinode Thread Scheduler

Thread Scheduler allows TNT to run across 
multiple nodes.

Requests facilitated through IBM’s Deep 
Computing Messaging Framework’s RPCs.

Multiple Scheduling Algorithms

Workload Un-Aware
● Random
● Round-Robin

Workload Aware
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Multinode Thread 
Scheduling
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Node A Node B
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…

tnt_join()

tid

…
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Synchronization

Three forms

Mutex

Thread Joining

Barrier

Similar to thread scheduling

Lock requests, Join requests, and Barrier notifications 
sent to node responsible for said synchronization
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Multinode Thread 
Scheduling
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Characteristics of TDSM

Provides One-Sided access to memory distributed among nodes 
through IBM’s DCMF.

Allows for virtual address manipulation

Maps distributed memory to a single virtual address space.

Allows for array indexing and memory offsets.

Scalable to a variety of applications

Size of desired global shared memory set at runtime.

Mutability

Memory allocation algorithm and memory distribution algorithm 
can be easily altered and/or replaced.
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Example of TDSM

0
global

15 30 45

t dsm_read(gl obal [ 15] ,  l ocal ,  20*si zeof ( i nt ) ) ;

global[15] to global[34]

0x00040012

Node 6Node 5 Node 7

Local Buffer
0x0004004E

to
0x0004009A 

Node 6: 0 to 14
and

Node 7: 0 to 4

…
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Summary of Results

The performance of the TNT thread system shows comparable 
speedup to that of Pthreads running on the same hardware.

The distributed shared memory operates at 95% of the 
experimental peak performance of the network, with distance 
between nodes not being a sensitive factor.

The cost of thread creation shows a linear relationship as the 
number of threads increase.

The cost of waiting at a barrier is constant and independent of 
the number of threads involved.
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Single-Node Thread System 
Performance

Based upon Radix-2 Cooley-
Tukey algorithm with the 
Kiss FFT library for the 
underlying DFT.

Underlying TNT thread 
model performs comparably 
to POSIX standard when the 
number of threads does not 
exceed the number of 
available processor cores.
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Memory System 
Performance

Reads and writes of 
varying sizes between one 
and two nodes.

For inter-node 
communications, data can 
be transferred at 
approximately 357 MB/s.

Kumar et al determined 
experimental peak 
performance on BG/P to be 
374 MB/s in their ICS’08 
paper.
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Memory System 
Performance

Size of Read/Write is a 
function of the number 
of nodes across which 
the data is distributed.

Latency linearly 
increases as the 
amount of data 
increases, regardless of 
distance between 
nodes.
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Multinode Thread Creation 
Cost

Approximately 0.2 
seconds per thread

Remained effectively 
constant
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Synchronization Costs

Performance of 
barrier is effectively 
a constant 0.2 
seconds.
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Conclusions and Future 
Work

Proven feasibility of system

Benefits of Execution Model-Driven 
approach

Room for Improvement

Improvements to kernel

More rigorous benchmarks

Improved allocation and scheduling 
algorithms
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