
Efficient Lists
Intersection by CPU-
GPU
Cooperative
ComputingDi Wu, Fan Zhang, Naiyong Ao, Gang Wang, Xiaoguang Liu, Jing Liu

Nankai-Baidu Joint Lab, Nankai University

Introduction

Cooperative Model

GPU Batching Algorithm

Experimental results

Related Work

Conclusion

Outline

Introduction

Cooperative Model

GPU Batching Algorithm

Experimental results

Related Work

Conclusion

Outline

Standard Query Processing

new 3, 16, 17, 24, 111, 127, 156, 777, 11437,…, 12457

york 15, 16, 17, 24, 88, 97,100, 156, 1234, 4356, …,12457

city 16, 29, 88, 97, 112, 156,4356, 8712, …,12457, 22888

• What are inverted index and inverted lists?

Term
Document IDs

Standard Query Processing(cont.)

When a query “new york city” submitted to the search engine,
these 3 inverted lists will be loaded from the inverted index, and
intersection operation will be applied.

new 3, 16, 17, 24, 111, 127, 156, 777, 11437,…, 12457

york 15, 16, 17, 24, 88, 97,100, 156, 1234, 4356, …,12457

city 16, 29, 88, 97, 112, 156,4356, 8712, …,12457, 22888

16, 156, …,12457 Other operations
in Search Engine

intersection

Problem

Lists intersection operation occupies a significant part of
CPU time in the modern web search engine

The query traffic could be quite heavy

Tens of thousands queries could arrive to one server in just
one second

Response time: the less the better

Could the new GPU technology
solve these problem?

Graphical Processing Units
(GPUs)
Special purposes processors to accelerate applications

Driven by gaming industry

Powerful parallel computing ability

Nvidia’s Compute Unified Device Architecture (CUDA)

A well-formed programming interface to the parallel
architecture of Nvidia GPUs for general purpose computing

Our Goal

Improve the performance of lists intersection in
real web search engines with the aid of GPU.

Introduction

Cooperative Model

GPU Batching Algorithm

Experimental results

Related Work

Conclusion

Outline

Cooperative Model

In practice, the load of a web search engine is changing every
time

The system throughput and response time could be impacted
seriously when system load fluctuates violently.

Traditional asynchronous mode

Newly arriving query is serviced by an independent thread

Some queries will be blocked by previous queries under heavy
load

CPU-GPU cooperative model

Asynchronous mode

Under light load, system works in asynchronous mode

Every newly arriving query will be processed immediately

Before processing the query, we determine the query should
be processed in which processor - CPU or GPU

Trade off: Long lists or short lists

Trade off: GPU kernel time and transferring time between
CPU and GPU

Synchronous mode

Under heavy load, the system works in synchronous mode,
queries are grouped in batches and processed by GPU

Firstly, Queries are blocked at CPU end and sent to GPU by
group

Group size is decided according to the query load and
response time limitation

Problem

How to design an efficient GPU batching algorithm?

Tradeoff between throughout and response time

Introduction

Cooperative Model

GPU Batching Algorithm

Experimental results

Related Work

Conclusion

Outline

GPU Intersection algorithm

The basic idea for intersecting two lists intersection on GPU
is parallel binary search

Assign each element of list1 to a GPU thread

Do binary search in the list2 to check whether the element is
in list2

Use scan and compact operation to generate the final result

GPU Intersection
algorithm(cont.)

10 20 30 40 45 48 55 57 65 80list1

list2 8 20 30 44 45 50 54 55 60 65 70 80

0 1 1 0 1 0 1 0 1 10-1 array

Binary Search

0 0 1 2 2 3 3 4 4 5parallel scan

20 30 45 55 65 80 0 0 0 0result

Compact

GPU Batching Algorithms

Pump enough queries to CPU at a time to make full use of SPs in GPU

Problem

How should change the original GPU intersection algorithm

How should we partition the work to balance the load for each GPU thread?

How to decide the number of queries in each batch

Two GPU batching algorithms

Query-Partition algorithm (PART)

Query-Parallel Algorithm (PARA)

PART

In CUDA platform, threads are grouped in thread blocks

Synchronization between threads in different blocks is
expensive

An intuitive idea to partition is assigning each query in the
batch to a unique thread block

Queries may be quite different in lists’ lengths, this lead to
huge diversity of computation complexity

some multiprocessors idling while the other multiprocessors
still busy on their (big) queries

PARA

Process a query by several blocks cooperatively according to
its size instead of assigning each query to a single block

Every block will have similar amount of load

We will compare PARA and PART in 3 aspects next

CPU preprocessing

GPU processing

Data transferring

CPU preprocessing

When a batch of N queries are ready, CPU will first sort lists
in each query by increasing length, and send the batch to
GPU

N is determined by total computation load of queries in the
batch

● Total computation load is estimated by a function of each query’s
shortest list’s length (See in experiment section)

Compared with PART, PARA can control the total
computation load delivered to GPU and load assigned to each
block more precisely

GPU processing

Unlike PART’s query-block mapping, PARA adopts element-thread
mapping

PARA assigns each element in the shortest list to a unique thread

PARA is more likely to distribute computation load evenly

PART and PARA both use binary search to check element, but there
are some differences in the compact phase

For PARA: each thread is responsible for an element, a global scan is
used.

For PART: each query is processed by a single block, so each block
executes a sectionalized scan algorithm

GPU processing(cont.)

PARA will transfer less result
data back to CPU!!

Data Transferring

The GPU(4GB global memory) we use could hold the two
data sets, we upload the whole data set to GPU when
initialization.

In a large-scale search engine, we could put those inverted
lists which are most frequently accessed in GPU memory

For each batch, necessary information, such as terms of each
query are uploaded to GPU before processing

The result data is sent back to CPU when a batch queries
processed

Introduction

Cooperative Model

GPU Batching Algorithm

Experimental results

Related Work

Conclusion

Outline

● PhenomIIX
CPU

● AMD

● PhenomIIX
● AMD

CPU

● 2GB*2
Memory

● DDR3 1333 memory

● 2GB*2
● DDR3 1333 memory

Memory

● C1060
GPU Card

● NVidia

● C1060
GPU Card

● NVidia

Environment

Computation threshold is used to control how many query a batch
contains

We set the computation threshold according to the factors below

The computing power of GPU

Required system throughput

Required response time

We use “number of thread blocks on every SM” as the threshold

PARA on GOV data set

throughput

PARA on GOV data set

response

Good tradeoff

PART VS PARA

Response time

Throughput

Response time fluctuation is bad to search engine

Violent fluctuations mean horrible user experience

Also, it will be difficult for administrator to predict system
performance

Therefore, it is an important metric for real time system

Response time fluctuation

Response time in PARA is stable

PARA assembles batches according to computational complexity, so
all batches have almost the same computation load

Response time fluctuation

Response time per
batch

Blue line for PARA
Red line for PART

If query load is light, system works in asynchronous mode

Both CPU and GPU can offer enough throughput

processing queries by CPU may lead to better response time

It is helpful to energy-saving by letting GPU idle

We need a routing-algorithm to decide which device to deal with
the query, CPU or GPU

Query scheduling under
asynchronous mode

Histogram

x-axis shows the time difference (CPU Time - GPU Time) per query

y-axis shows the number of queries

CPU has advantage over GPU on most queries, as these queries
contains low computation complexity(short lists)

Route algorithm

CPU has advantage over GPU on most queries

Graph

X-axis: query ID (we count 3000 queries, GOV data set)

Y-axis: time difference (CPU Time- GPU Time)

Compare

CPU’s s advantage is not significant

GPU is far superior in the queries whose computation complexity is high

Route algorithm(cont.)

CPU advantage

GPU advantage

?
How can we measure the
computation complexity in
each query?

What we have

The number of lists in each query

The length of each list

That is all …

The information is not enough

We do not know:

● How many docIDs are common docIDs

● Number of comparisons of each docIDs

Route algorithm(cont.)

We use statistical methods

We run each query (training set) on CPU and GPU separately, record the
time difference

We introduce three metric to estimate the computational complexity

The scheduling algorithm boils down to the relationship between the time
difference and each metrics.

We adopt regression analysis

● to test the correlation between each metric and actual time
difference

Route algorithm(cont.)

Metric to each query:

LOS: the length of the shortest list

UBOS: the upper bound of the number of comparisons

● UBOS = LOS * (logL1 + logL2 + …)

UBOCT: the upper bound of the number of comparisons per thread

● If one query is processed fully in parallel on GPU, UBOCT will be
good metric

Route algorithm(cont.)

Result

R-square is the coefficient of determination, which is the proportion of
variability in dataset that is accounted for by the metric

Regression formula:

Route algorithm

Winner!

How to use the formula

When CPU gets a query under light load, it calculates UBOC first

Then, timediff is got from the regression formula

If timediff is positive, the query will be routed to the GPU, which means
GPU may process it faster.

● Otherwise, CPU will process the query by itself

Route algorithm

We present a CPU-GPU cooperative model which can dynamically
switch between the asynchronous mode and synchronous mode

Under light load, the system works in asynchronous mode. We
minimize query response time in the aid of GPU. Heuristic strategies
are designed to decide whether the current query should be processed
by GPU or CPU.

Under heavy load, the system works in synchronous mode. We propose
a query-parallel algorithm to balance the load between thread blocks,
therefore process a batch efficiently.

Conclusion

Questions?

