
Multiplexing Low and High QoS workloads in
Virtual Environments

Sam Verboven, Kurt Vanmechelen
and Jan Broeckhove

University of Antwerp
Research Group Computational

Modeling and Programming

1 / 39

Outline
Introduction

Simulation Model
Resource and Job Model
VM Management Model
Simulation framework

Algorithm

Experiments
Load Patterns
Setup

Results

Continued Research

Future Work

Conclusion

2 / 39

Outline
Introduction

Simulation Model
Resource and Job Model
VM Management Model
Simulation framework

Algorithm

Experiments
Load Patterns
Setup

Results

Continued Research

Future Work

Conclusion

3 / 39

Infrastructure management

IT infrastructure management is increasingly relying on
virtualization

I Physical machines migrate to Virtual machines
I Deployed hardware agnostically using VMM
I VMM offer flexibility in :

I Partitioning hardware resources
I Isolation
I Suspension
I Migration
I ...

4 / 39

Utilization

Virtualized servers require guaranteed availability and
performance (high-QoS requirements)

I Static resource allocation
I Provisioning resources based on worst case requirements
I Resource usage varies
I Underutilized infrastructure

5 / 39

Utilization

How can we address underutilization?
Dynamically add low priority, low-QoS workloads

I Fill underutilized periods
I Virtualization gives flexibility

I Start, stop, suspend, resume, migrate

High-QoS workloads must not suffer form being multiplex with
low-QoS

6 / 39

Outline
Introduction

Simulation Model
Resource and Job Model
VM Management Model
Simulation framework

Algorithm

Experiments
Load Patterns
Setup

Results

Continued Research

Future Work

Conclusion

7 / 39

Resource and Job Model

Scheduling problems are researched in the context of the
following model

I Infrastructure provider P
I Hosts a set of m identical machines Mj (j = 1, · · · ,m)
I Machine are able to execute any job from the set of n jobs

Ji (i = 1, · · · ,n)
I Machine processing capacity sj is
∀i , j ∈ {1, · · · ,m} : si = sj = 1.

I A job models the execution of a virtual machine instance
I Load patterns vary over time
I Jobs are sequential
I Release time ri and duration pi

8 / 39

Resource and Job Model

We consider two types of QoS levels for jobs
I High-QoS jobs

I Must start at time ri
I Should be able to allocate the full processing power of the

machine
I Are not preemptible

I Low-QoS jobs
I Can be started at any time
I Can be preempted at a fixed cost cp.
I A resumption of a virtual machine instigates a cost cr .

I The job startup costs (cb) and termination costs (ct) are
also modeled

I An example of a low-QoS workload is a VM that executes
low-priority CPU intensive batch jobs.

9 / 39

Resource and Job Model

I Machines correspond to a virtualized core of a server
I Infrastructure provider P hosts a cluster of servers
I Machines can accommodate more than 1 job at a time
I Distribution and allocation of virtual cores to VM is handled

by the VMM
I Simple initial model

I Focus on CPU usage alone
I Do not model multiplexing overheads
I I/O contentions, cache line misses...

10 / 39

VM Management Model

Managing VM distribution over multiple servers requires a
virtual infrastructure manager (VIM)

I The VIM determines the available features
I Many different options

I vSphere, Eucalyptus, OpenNebula, ...

I We chose OpenNebula
I Open source, research platform, feature set generality...
I Haizea scheduler used a basis for simulation
I VM operations: shutdown, start, suspend, resume and

migrate

11 / 39

Simulation framework

I Using the Haizea simulation backend
I Discrete event simulation
I Supports job type differentiation

I Solve underutilization using an overbooking approach
I Scheduler does not know runtime
I Active scheduling manages low-high QoS interference
I Compatible with OpenNebula

12 / 39

Outline
Introduction

Simulation Model
Resource and Job Model
VM Management Model
Simulation framework

Algorithm

Experiments
Load Patterns
Setup

Results

Continued Research

Future Work

Conclusion

13 / 39

Algorithm

I Reduce resource wastage while having a minimal impact
on existing resource users.

I It is reasonable to assume high-QoS VMs do not
continuously require all resources

I Goals
I Only launch low-QoS when resources are available
I Remove when interference might occur
I Preserve performed work

I VMs are uniquely suited (suspend, resume, migrate)
I Overhead must be taking into account

14 / 39

Algorithm

I Simple and effective method to put restrictions on
overbooking tolerance

I Using just 3 parameters
I Maximum amount of overbooked VMs
I Lower bound: maximum server utilization when adding

additional overbooked workloads
I Upper bound: when should VMs start suspending

I Two steps:
I Schedule new overbooking requests on suitable servers
I Evaluate running requests and take appropriate actions if

needed

15 / 39

Algorithm

Input: Set of nodes, Set of vm requests, lower bound
foreach Node i do

if Utilization(i) ≤ lower bound then
available nodes.add(i) ;

end
end
Update(vm requests) ;
while available nodes remaining & vm requests remaining do

vm = vm requests.pop() ;
n = available nodes.pop() ;
Schedule(vm on Node n) ;

end
Algorithm 1: Adding Overbooked VMs

16 / 39

Algorithm

Input: Set of nodes, upper bound
foreach Node i do

if Utilization(i) ≥ upper bound then
vm = overbooked vms(i).get last() ;
Suspend(vm) ;

end
end

Algorithm 2: Suspending Overbooked VMs

17 / 39

Outline
Introduction

Simulation Model
Resource and Job Model
VM Management Model
Simulation framework

Algorithm

Experiments
Load Patterns
Setup

Results

Continued Research

Future Work

Conclusion

18 / 39

Load Patters

Three different load patters: noisy, spiky, business

Noisy: Starting from a mean utilization value µ, cpu load
is generated by a normal distribution N(µ,15).

 20

 30

 40

 50

 60

 70

 80

 90

 100

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

C
P

U
 U

til
iz

at
io

n

Time

µ
Load

19 / 39

Load Patters
Spiky: This load pattern is based on a normal distribution

with σ = 5. To add load spikes to the pattern, each
drawing of the load distribution has 1% chance of
generating a spike with 90% chance of having a
positive one. Each spike has 50% chance of
continuing.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

C
P

U
 U

til
iz

at
io

n

Time

µ
Load

20 / 39

Load Patters
Business: A function is used to determine the µ parameter of

the normal distribution N(µ,5) depending on the
time of day. The value of µ is calculated with a
piecewise function that represents utilization
fluctuations coinciding with business hours.

 30

 40

 50

 60

 70

 80

 90

 100

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

C
P

U
 U

til
iz

at
io

n

Time

µ
Load

21 / 39

Setup

I 50 homogenous octacore nodes
I Non-trivial synthetic load patters
I High-QoS

I Each high-QoS application has an equal chance of
generating one of the three load patterns

I For spiky and noisy load patterns, µ is drawn from a normal
distribution N(75,15).

I The business load pattern, min = 50 and max = 90.
I All cores are continuously occupied with high-QoS jobs

I Low-QoS
I Each low-QoS job has a noisy load pattern with µ = 90

simulating CPU intensive batch jobs

22 / 39

Setup

 50

 55

 60

 65

 70

 75

 80

 85

 90

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

C
P

U
 U

til
iz

at
io

n

Time

Node average

Figure: Sample load pattern on a single eight core node during a weekday.

23 / 39

Setup

All application runtimes are generated according to a
geometrical distribution. If X is the runtime in minutes, the
probability is expressed for n = 30,60,90, ... with p equaling
0.1% and 1% for respectively high- and low-QoS applications.

Pr [X = n] = p (1− p)(
n
30−1) (1)

The costs for VM operations were configured as
cb = cp = cr = ct = 30s.

24 / 39

Setup

I Executing without overbooking gives an average utilization
of 69.4%
= fairly high average utilization

I Every test is a variation on three parameters:
I Max overbooked VMs either 1, 2 or 3
I Upper bound in step of 5 between [85,95]
I Lower bound in step of 5 between [60,80]
I Minimum difference = 15%
I Difference between bounds: window size

25 / 39

Outline
Introduction

Simulation Model
Resource and Job Model
VM Management Model
Simulation framework

Algorithm

Experiments
Load Patterns
Setup

Results

Continued Research

Future Work

Conclusion

26 / 39

Results

Average utilization can increase from 69.4% without
overbooking to:

I 73.7% with max 1 overbooked VM and bounds [60,85]
∼ 400 suspends = 1 per day/server

I 87.3% with max 3 overbooked VMs and bounds [80,95]
∼ 8800 suspends = 25 per day/server

27 / 39

Results

Some trends can be observed across the different bound
selections:

I With low bounds max overbooked VMs has low impact
I Moving from max 1 to 2 overbooked VMs results in fewer

suspend for similar utilization gains
I Increasing from max 2 to 3 results in more suspends an

little to no utilization gains
I For the current setup we find that max 2 is the optimal

choice

28 / 39

Results
Increasing the lower bound with a constant higher bound:

I Utilization gains decrease slowly
I Suspends increase exponentially
I Lower bound determines suspend/utilization factor

0%

2%

4%

6%

8%

10%

12%

14%

 15 20 25 30 35
0%

500%

1000%

1500%

2000%

2500%

3000%

3500%

U
til

iz
at

io
n

in
cr

ea
se

S
us

pe
nd

s
in

cr
ea

se

Window size

Utilization
Suspends

Figure: Increase in utilization and suspensions when using 2 overbooking slots and an
upper bound of 95. The lower bound is increased to decrease the overbooking window.

29 / 39

Results

Increasing the upper bound with a fixed window size results in:
I A linear increase in utilization

72%

74%

76%

78%

80%

82%

84%

86%

88%

 85 90 95

U
til

iz
at

io
n

Upper bound

Window size 25
Window size 20
Window size 15

Figure: Utilization with two overbooking slots and varying upper bounds.

30 / 39

Results
I Roughly the same amount of suspends

 1000

 10000

 85 90 95

S
us

pe
nd

s

Upper bound

Window size 25
Window size 20
Window size 15

Figure: Suspensions with two overbooking slots and varying upper bounds and
windows.

The selection of a correct upper bound will depend on factors
not yet explored in the current simulation.

31 / 39

Outline
Introduction

Simulation Model
Resource and Job Model
VM Management Model
Simulation framework

Algorithm

Experiments
Load Patterns
Setup

Results

Continued Research

Future Work

Conclusion

32 / 39

CPU intensive benchmark

I Dual socket quad core Intel Xeon
I CPU limited

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10

A
V

G
 T

ra
ns

ac
tio

ns

Concurrent VM’s

Figure: Sysbench scaling using both cpu and rate limiting with increasing VM amount

33 / 39

Analysis

I With 8 VMs we top off at about 240 transactions/second
and 95% utilization per VM

I With 9 VMs we top off at about 220 transactions/second
and 87% utilization per VM

I With 8 VMs, 220 transactions generates about 85%
utilization per VM

I This is roughly the most conservative setup in the
simulator which gained about 4% utilization

34 / 39

Outline
Introduction

Simulation Model
Resource and Job Model
VM Management Model
Simulation framework

Algorithm

Experiments
Load Patterns
Setup

Results

Continued Research

Future Work

Conclusion

35 / 39

Future Work

I Add a more complex VM/VMM interaction model
I Use real world load trace data
I Create more accurate model (memory, network, ...)
I Implement complexer scheduling algorithms
I Compare with real world experiments using OpenNebula

36 / 39

Outline
Introduction

Simulation Model
Resource and Job Model
VM Management Model
Simulation framework

Algorithm

Experiments
Load Patterns
Setup

Results

Continued Research

Future Work

Conclusion

37 / 39

Conclusion

I There are opportunities to increase utilization by
monitoring the difference between formal and actual
requirements

I Low-QoS workload overbooking can lower underutilization
while having a manageable impact

I Scheduling policies can be simple and effective using a
limited number of parameters

I An optimal selection of parameters can be made
depending on the requirements

38 / 39

Questions?

39 / 39

	Introduction
	Simulation Model
	Algorithm
	Experiments
	Results
	Continued Research
	Future Work
	Conclusion

