

An Advance Reservation-based Co-allocation Algorithm for Distributed Computers and Network Bandwidth on QoS-guaranteed Grids

Atsuko Takefusa, Hidemoto Nakada,
Tomohiro Kudoh, and Yoshio Tanaka
National Institute of Advanced Industrial Science and Technology
(AIST)

Resource Co-allocation for QoS-guaranteed Grids

- QoS is a key issue on Grid/Cloud
 - Network (=Internet) is shared by abundant users
- Network resource management technologies have enabled the construction of QoS-guaranteed Grids
 - Dynamic resource co-allocation demonstrated
 G-lambda and EnLIGHTened Computing [GLIF06,SC06]
 - Each network
 is dedicated
 and dynamically
 provisioned
 - No connectivity w/o reservation

Preconditions of Our Co-allocation

- Commercial services
 - Some resources including network are provided by resource managers (RM) from commercial sectors
 - The resources will be charged
 - The RMs do not disclose all of resource information
- Advance reservation
 - Prediction-based scheduling systems, e.g. KOALA and QBETS, cannot guaranteed to activate co-allocated resources at the same time
 - The user has to pay for some commercial resources during the waiting time
- On-line reservation service
 - Try to complete resource co-allocation, quickly

Issues for Resource Co-allocation for QoS-guaranteed Grids (1/2)

- Co-allocation of both computing and network resources
 - There are constraints between computers and the network links
 - Cannot use list scheduling-based approaches and network routing algorithms based on Dijkstra's algorithm, straightforwardly
- Reflecting scheduling options
 - Users: (a) reservation time, (b) price, and(c) quality/availability
 - Administrators: (A) load balancing among RMs,
 (B) preference allocation, and (C) user priority

Issues for Resource Co-allocation for QoS-guaranteed Grids (2/2)

- Calculation time of resource co-allocation
 - Resource scheduling problems are known as NP-hard
 - Important to determine co-allocation plans with short calculation time, especially for on-line services

Our Contribution

- Propose an on-line advance reservation-based coallocation algorithm for distributed computers and network bandwidths
 - Model this resource co-allocation problem as an integer programming (IP) problem
 - Enable to apply the user and administrator options
- Evaluate the algorithm with extensive simulation, in terms of functionality and practicality
 - Can co-allocate both resources and can take the administrator options as a first step
 - Planning times using a general IP solver are acceptable for an on-line service

The Rest of the Talk

- Our on-line advance reservation-based co-allocation model
- An advance reservation-based co-allocation algorithm
 - Modeled as an IP problem
- Experiments on functional and practical issues
- Related work
- Conclusions and future work

Our On-line Advance Reservationbased Co-allocation Model

Consists of Global Resource Coordinators (GRCs)
 (= Grid scheduler) and resource managers (RMs)

• Each RM manages its **User / Application** reservation timetable and discloses a part of the **Grid Resource** Coordinator (GRC) resource information Network GRC creates GRC Compute RM RM reservation plans **CRM CRM** NRM **NRM** and allocates **CRM** the resources SRM CRM Vetwork SRM **└─**Network Domain A Domain B Storage RM

User Request and Reservation Plan

Resource Requirement Parameters

- Compute resources: # of CPUs/Cores, Attributes (e.g., OS)
- Network resources: Bandwidth, Latency, Attributes
- Time frames: Exact (ST and ET) or range (EST, LST, and D)

The Steps of Resource Co-allocation

GRC receives a co-allocation request from <u>User</u>

2. GRC Planner creates reservation plans

2i. Selects N time frames from [EST, LST+D]

2ii. Retrieves available resource information at the N time frames from RMs

2iii. Determines N' (≤N) co-allocation plans using 2ii information

→ Modeled as an IP problem

2iv. Sorts N' plans by suitable order

3. GRC tries to co-allocate the selected resources in coordination with the RMs

4. GRC returns the co-allocation result, 3. Resource whether it has succeeded or failed

If failed, the User will resubmit an updated request

User / Application 4. Result 1. Request **GRC** 2. Planning Request Co-allocator **Planner** Reservation **Plans** 2ii. Retrieving available info Resource Managers (RMs)

Resource and Request Notations

Resources: G=(V, E)

- $v_n (\in V)$: Compute resource site or network domain exchange point
- $-e_{o,p}$ ($\in E$): Path from v_o to v_p

Resource parameters

- wc_i ($i \in V$): # of available CPUs wb_k ($k \in E$): Available bandwidth ($e_{o,p}$ and $e_{p,o}$ share the same wb_k)
- vc_i (i ∈ V): Value per unit of each CPU vb_k (k ∈ E): Value per unit of bandwidth

Request: $G_r = (V_p, E_r)$

- vr_m ($\in V_r$): Requested compute site
- $er_{q,r}$ ($\in E_r$): Requested network between vr_q and vr_r

Request parameters

- rc_i ($j ∈ V_r$): Requested # of CPUs
- rb_{l} ($l ∈ E_{r}$): Requested bandwidth

Modeling as a 0-1 IP Problem

X (Compute site plan) = $x_{i,j} \in \{0, 1\}$ Y (Network path plan) = $y_{k,l} \in \{0, 1\}$

$$x_{i,j} \in \{0, 1\} \ (i \in V, j \in V_r)$$
 (1)
 $y_{k,l} \in \{0, 1\}$
 $(k=(m, n) \in E, m, n \in V,$ (2)

$$I=(o, p) \in E_r, o, p \in V_r$$

Objective function and Constraints

Minimize

$$\sum_{i \in v, j \in v_r} vc_i \cdot rc_j \cdot x_j + \sum_{k \in E, l \in E_r} ve_k \cdot rb_l \cdot y_{k, l}$$
 (3)

Subject to

$$\forall j \in V_r, \sum_{i \in V} x_{i, j} = 1 \tag{4}$$

$$\forall i \in V, \sum_{j \in V_r} x_{i, j} \le 1 \tag{5}$$

$$\forall i \in V, \sum_{j \in V_r} rc_j \cdot x_{i, j} \leq wc_i$$
 (6)

$$\forall l \in E_r, \sum_{k \in E_r} y_{k,l} \begin{cases} \geq 1 (rb_l \neq 0) \\ = 0 (rb_l = 0) \end{cases}$$
 (7)

$$\forall k \in E, \sum_{l \in F_x} rb_l \cdot y_{k,l} \le wb_k \tag{8}$$

$$\forall l = (o, p) \in E_r, \forall m \in V,$$

$$\sum_{n \in V, m \neq n} y_{(n,m),(o,p)} - \sum_{n \in V, m \neq n} y_{(m,n),(o,p)} = \begin{cases} x_{m,o} - x_{m,p} & (rb_l > 0) \\ 0 & (rb_l = 0) \end{cases}$$
(8) Each selected path can guarantee requested bandwidth

- (3): Minimize the sum of resource values
- (4),(5),(6): Constraints on the compute site plan X
 - (4) Select 1 site for each requested site
 - (5) Each site is selected to 0/1 site
 - (6) Each selected site can provide requested # of CPUs
- (7),(8): Constraints on the path plan Y
 - (7) The sum of $y_{k,l}$ becomes more than 1, if requested
- (9): Constraint on both X and Y

Application of Mass Balance Constraints

- Mass Balance Constraints (Kirchhoff's current law)
 - Except for source and sink, the sum of inflows equals to the sum of outflows
- Application of the constraints
 - Assume requested network l = (o, p) ($\in E_r$) is "current" from o to p and the flow = 1
 - \rightarrow Right-hand side becomes 0 / 1 / -1
 - $x_{m,o}$ =1 when m (∈V) is source, or $x_{m,p}$ =1 when m is sink → Right-hand side could be represented as $x_{m,o}$ - $x_{m,p}$

Additional Constraints

- Calculation times of 0-1 IP become exponentially long, due to NP-hard
- Propose additional constraints, which are expected to make calculation times shorter

Subject to

$$\forall l \in E_r, \forall m, n \in E(m \neq n), y_{(m,n),l} + y_{(n,m),l} \leq 1$$
 (10)

$$\forall l \in E_r, \sum_{k \in E} y_{k, l} \le P_{\text{max}}$$
 (11)

Specifies *P_{max}*, the maximum of the number of paths for each network

Reflecting co-allocation options

- User options
 - (a) Reservation time
 - (b) Price
 - (c) Quality/Availability
- Administrator options
 - (A) Load balancing among **RMs**

 - (C) User priority

- → Sort plans by times in stage 2iv
- → Sort plans by the total price
- \rightarrow Set vc_i and vb_k to their quality, modify the objective function, and then sort plans by the total value
- (B) Preference allocation \rightarrow Set vc_i and vb_k to weights of each resource
 - → Modify the retrieved available resource information

Experiments

- Evaluate the algorithm with extensive simulation
 - Assume an actual international testbed
- Experiments on functional issues
 - Can co-allocate both compute and network resources
 - Can take the administrator options as a first step
- Experiments on practical issues
 - Compare planning times using additional constraints and different IP solvers
 - Planning times are acceptable for an on-line service

NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

Experimental Environment

- Assume an actual testbed used in the G-lambda and EnLIGHTened Computing experiments
 - 3 network domains, 2 domain exchange points, and 10 sites
 N1(16) N2(32)

Simulation Settings

GRM=1, NRM=3, CRM=10
4 / N, 3 / S, 3 / U
X1{N, S,U}, X2{N, S}
N{8, 16, 32, 64}, S{8, 16, 32}, U {8, 16, 32} / 1
in-domain: 5 / 5, inter domain: 10 / 3
UserA, UserB
Type 1, 2, 3, 4 (Uniform distribution) \rightarrow
1, 2, 4, 8 for all sites in all types (Uniform)
1 [Gbps] for all paths in all types
Poisson arrivals
30, 60, 120 [min] (Uniform distribution)
D × 3

Simulation Scenarios

 In the first 24 hours, each user sends co-allocation requests for the next 24 hour resources

The request load (= Ideal resource utilization on the next

- # of reservation plans N = 10
 - Time frames are selected equidistantly

Comparison of Co-allocation Success Ratios

-N: Normal cases

-S : Configured different service levels

- UserB is set to a low priority
- For each UserB request, # of available resources is reduced to half amount

Elapsed Time [min Comparison of service levels (SL)

- -N: UserA and B are comparable
- -S: UserA is 0.60 and UserB is 0.37 when the load = 100[%]
- → Can take option (C) User priority

Comparison of Resource Utilizations with administrator options (A) and (B)

(A) Load balancing

(B2) Preference allocation by # of CPUs (Priority: *3(64) > *2(32) > *1(16) > *0(8))

(B1) Preference allocation by domain

 vc_i is set as follows:

(B1)
$$N^* = 1$$
, $S^* = 10$, $U^* = 100$

Preferred resources are selected first

Request → Can take options (A) and (B)

Experiments on practical issues

- Investigate if planning times are acceptable for an online service
- Compare planning times using
 - Additional constraints
 - Different IP solvers
- IP solvers
 - General IP solver: GLPK (free, but slow)
 - SAT-based solver: MiniSat and Sugar++
 - Sugar++ enables a SAT solver to solve IP problems
- Experimental settings

CPU: Intel Core2 Quad Q9550 (2.83GHz),

OS: CentOS 5.0, kernel 2.6.18 x86_64, Memory: 4GB

Comparison of planning times

Additional constraint are effective Acceptable for an on-line service

MiniSat-st-1 is the best performance

Solver - con-	Avg. [sec]	Max. [sec]	σ
GLPK	0.779	8.492	1.721
GLPK-st	0.333	4.205	0.700
MiniSat-st	12.848	216.434	27.914
MiniSat-st-1	1.918	2.753	0.420

GLPK is dominant

→ IP solvers are suitable for our algorithm

"-st" : Additional constraints (P_{max} =2)

"-1": # of SAT executions = 1 (Select only one satisfied solution)

Quality of plans : GLPK ≥ GLPK-st = MiniSat-st > MiniSat-st-1

Comparison of the Avg. planning times for each request

Planning times in log scale

Planning times from 0 to 10 [sec]

Discussion

- The coverage of IP problems is expanding
 - Performance of recent computers and the improvement of IP solvers
 - IP calculation times can be reduced by applying suitable constraints and approximate solutions
- Our resource co-allocation model
 - The search area of a single GRC can be localized, because GRCs can consist hierarchically
 - The # of variables scales by the # of "computer sites", not "computers"
 - In practical use, additional constraints will increase, e.g.,
 latency, execution environment, and required data locations

→Modeling as an IP problem is effective for our model

Related Work

They cannot select suitable resources because the first

- found resources are selected Backtrack-based scheduling algorithm [Ando, Aida. 2007]
 - Enables both co-allocation and workflow scheduling
 - Co-allocation times become long and lots of resources are blocked, when the scheduler allocates resources incrementally
- Co-allocation algorithm for NorduGrid [Elmroth, Tordsson, 2009]
- Search (1) computer sites and (2) paths between the selected sites, sliding a reservation time frame
- Resource constraints make planning times long
- Co-reservation algorithm based on an optimization problem [Röblitz, 2008]
 - Network model is simple
 - Use all of resource information

No algorithm can take co-allocation options

Conclusions

- We propose an on-line advance reservation-based co-allocation algorithm for compute and network resources
 - Modeled as an integer programming (IP) problem
 - Enable to apply the user and administrator options
- The experiments showed
 - Our algorithm can co-allocate both resources and can take the administrator options
 - Planning times using a general IP solver with additional constraints are acceptable for an on-line service

NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

Future Work

- Improve our algorithm and conduct further experiments on the scalability
- Apply sophisticated SLA and economy models and confirm that our algorithm can also take user options

NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

Acknowledgements

- Prof. Naoyuki Tamura and Mr. Tomoya Tanjo from Kobe University
- Prof. Katsuki Fujisawa and Mr. Yuichiro Yasui from Chuo University
- This work was partly funded by KAKENHI 21700047 and the National Institute of Information and Communications Technology