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Resource Co-allocation for QoS-

guaranteed Grids
e QoS is a key issue on Grid/Cloud

— Network (=Internet) is shared by abundant users
e Network resource management technologies have
enabled the construction of QoS-guaranteed Grids

— Dynamic resource co-allocation demonstrated
G-lambda and EnLIGHTened Computing [GLIF06,SC06]

— Each network | — - e
is dedicated j
and dynamically & 1
provisioned S TR

— No connectivity £ Resource co-allocation is

w/o reservation |
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an important technology
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Preconditions of Our Co-allocation
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e Commercial services

— Some resources including network are provided by
resource managers (RM) from commercial sectors

— The resources will be charged
— The RMs do not disclose all of resource information

e Advance reservation

— Prediction-based scheduling systems, e.g. KOALA and
QBETS, cannot guaranteed to activate co-allocated
resources at the same time

e The user has to pay for some commercial resources during the
waiting time

e On-line reservation service

— Try to complete resource co-allocation, quickly
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Issues for Resource Co-allocation for
QoS-guaranteed Grids (1/2)

e Co-allocation of both computing and network
resources

— There are constraints between computers and the
network links

— Cannot use list scheduling-based approaches and network
routing algorithms based on Dijkstra's algorithm,
straightforwardly

e Reflecting scheduling options

— Users: (a) reservation time, (b) price, and
(c) quality/availability

— Administrators: (A) load balancing among RMs,
(B) preference allocation, and (C) user priority
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Issues for Resource Co-allocation for
QoS-guaranteed Grids (2/2)

e Calculation time of resource co-allocation
— Resource scheduling problems are known as NP-hard

— Important to determine co-allocation plans with short
calculation time, especially for on-line services
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e Propose an on-line advance reservation-based co-
allocation algorithm for distributed computers and

network bandwidths

— Model this resource co-allocation problem as an integer
programming (IP) problem

— Enable to apply the user and administrator options

e Evaluate the algorithm with extensive simulation, in
terms of functionality and practicality

— Can co-allocate both resources and can take the
administrator options as a first step

— Planning times using a general IP solver are acceptable for
an on-line service
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e Qur on-line advance reservation-based co-allocation
model

e An advance reservation-based co-allocation algorithm

— Modeled as an IP problem
e Experiments on functional and practical issues
e Related work
e Conclusions and future work
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Our On-line Advance Reservation-
based Co-allocation Model

Consists of Global Resource Coordinators (GRCs)
(= Grid scheduler) and resource managers (RMs)

Each RM manages Its [ User / Application ]
reservation timetable and

discloses a part of the ey
resource information Coordinator (GRC)

Network

GRC creates
reservation plans
and allocates

Compute RM
CRM

the resources etwork‘
Domain A Domain B

Storage RM
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User Request

/ ? (Linux, \
. MPI)

\QQ

& ? (LInux,

? MPI)

MPI)
EarliestStartTime (EST) 1:00

LatestStartTime (LST) 5:00
@ration (D) 1 hou/

Resource Requirement Parameters

To

pstract
atwork

pology

StartTime (ST) 2:00

QndTime (ET) 3:@

e Compute resources: # of CPUs/Cores, Attributes (e.g., OS)

e Network resources: Bandwidth, Latency, Attributes

e Time frames: Exact (ST and ET) or range (EST, LST, and D)
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Resource Co-alioca

1. GRCreceives a co-allocation request from User
2. GRCPlanner creates reservation plans [ User / Application ]

2i. Selects N time frames from [EST, LST+D] 4

2ii. Retrieves available resource information - Reauest| 4. Result GRC
at the N time frames from RMs

2iii. Determines N' (<N) co-allocation plans / 2. P|anning\
using 2ii information 4 Request
— Modeled as an IP problem Co-allocator g———2] Planner

2iv. Sorts N' plans by suitable order

. Reservation
3. GRCtries to co-allocate the selected Plans
resources in coordination with the RMs \_ J
4. GRC returns the co-allocation result,3: Resource 2il. Retrieving
Co-allocation available info
whether it has succeeded or failed Y \
If failed, the User will resubmit an updated request[f[f[Resource Managers (RMs)
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Resource and Request Notations

Resources: G=(V, E) Request: G.=(V, £ )
— v, (e V) : Compute resource site or — vr,, (e V,): Requested compute
network domain exchange point site
- e, ,(ekE):Pathfromv,tov, — er, ,(€E,):Requested network
Resource parameters between vr, and vr,
— wg; (ieV) : # of available CPUs Request parameters
wb, (k€E) : Available bandwidth — rc; (jeV,) : Requested # of CPUs
(e, ,and e, ,share the same wb,) — rb,(l€E,) : Requested bandwidth

— v¢; (ieV) : Value per unit of each CPU
vb, (k€E) : Value per unit of bandwidth

0w
€10 €5, 4
(1G) (£G)
. e’l o)) e? 1 (:-LG) E
Vi Domain 1 ' Domain 2 Vs
(30cpué‘)' -------------- 9 -r-T-]-anl-l:] -------------- Vq -------------- .o.m.g.ln -------------- (20cpus)
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Modeling as a 0-1 IP Problem
X (Compute site plan) = x;;€{0, 1} (ieV, jeV,) (1)
Y (Network path plan) = y, ,&{0, 1}
(k=(m, n)eE, m, n €V, (2)
I=(o, p) €E,, 0, p €V,)

vr, 110, 1,0,0,0,0
x4 vr, 110,000 1,0 |Resources
vr, }11,0,0,0,0,0
[e0 800020202207 ).
erp |0 0 1 0 1 0 ..
Y ery ;
er,;

/Domamz N\
=S Request

0O 1 0 0 0 O
O 0 0 0 0O
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Objective function and Constraints
Minimi (3) : Minimize the sum of resource
inimize |
S'veerex+ Y veerb-ye (3) values
iev, jevr keE,l€Er
(4),(5),(6) : Constraints on the
Subject to compute site plan X
VieVn S % =1 (4) (4) Select 1 site for each requested site
ey gxi,jgl (5) (5) Each site is selected to 0/1 site
R - (6) Each selected site can provide
v ev,%;rrc,-x.,,swc. (6) requested # of CPUs
VIcE T .{>(1)E:E:¢8; (7) (7),(8) : Constraints on the path plan Y
vk e E, 3 rbi- i1 < whi (8) (7) The sum of y, , becomes more than 1,

(0 ;)’e ———— if requested

Z Y(n,m), (o, p) — ZY(m,n),(o,p)

nev,m=n nev,m=n

Xmo—Xmp (rbi>0) (8) Each selected path can guarantee
{ 0 (rbi = 0) (9) requested bandwidth

(9) : Constraint on both Xand Y
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m,o0 — Am, b 0
Y. Youm.e o] ZY(m,n),(o,pF{X g (T2 0 (9)

0 (rbi=0) :
Sum of outflow Sum of inflow 0/f/-f Source: 0

_f < .
e Mass Balance Constraints (Kirchhoff's current law)

— Except for source and sink, the sum of inflows equals to
the sum of outflows

e Application of the constraints

— Assume requested network | = (o0, p) (€ E,) is "current”
from o to p and the flow =1

— Right-hand side becomes0/1/-1

— X, o,=1 When m (V) is source, or x,,, ,=1 when m is sink
— Right-hand side could be represented as x,, ,- X, ,
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e Calculation times of 0-1 IP become exponentially

long, due to NP-hard

e Propose additional constraints, which are expected
to make calculation times shorter

Subject to
vl eE, YmneE(M#=N), Y + Yom <1 (10)

Vvl eEr Zykl max (11)

keE

Specifies Pmax, the maximum of
the number of paths for each network

— Solutions might not be optimal
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e User options
(a) Reservation time — Sort plans by times in stage 2iv
(b) Price — Sort plans by the total price

(c) Quality/Availability —Setvc; and vb, to their quality,
modify the objective function, and

e Administrator options
then sort plans by the total value

(A) Load balancing among
RMs

(B) Preference allocation —Setvc; and vb, to weights of
each resource

(C) User priority —Modify the retrieved available
resource information
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Experiments

e Evaluate the algorithm with extensive simulation
— Assume an actual international testbed

e Experiments on functional issues
— Can co-allocate both compute and network resources
— Can take the administrator options as a first step

e Experiments on practical issues

— Compare planning times using additional constraints and
different IP solvers

— Planning times are acceptable for an on-line service
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EnLIGHTened Computing experiments

— 3 network domains, 2 domain exchange points, and 10 sites
N1(16) N2(32)

S1(16)
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Simulation Settings

Environment Settings

Comfiguration

GRM=1, NRM=3, CRM=10

# of sites / Domain

4/N,3/S,3/U

Domain exchange points

X1{N, S,U}, X2{N, S}

# of CPUs / CPU unit value

N{8, 16, 32, 64}, S{8, 16, 32},
U{8, 16,32} /1

Bandwidth [Gbps] / unit value

in-domain : 5/ 5, inter domain: 10/ 3

Resource Requirement Settings

Users

UserA, UserB

Resource requirement types

Type 1, 2, 3, 4 (Uniform distribution) —

Requested # of CPUs

1, 2, 4, 8 for all sites in all types (Uniform)

Requested bandwidth

1 [Gbps] for all paths in all types

Interval of each user request

Poisson arrivals

Reservation duration (D)

30, 60, 120 [min] (Uniform distribution)

LST-EST+D

D X3

i

Typel

>

Type2

»

Type3

e

Typed
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e |n the first 24 hours, each user sends co-allocation
requests for the next 24 hour resources

— The request load (= Ideal resource utilization on the next
day) becomes 100 [%]

Available
User B Regq. #1 Req. #3 =t
1 1 | - Req. #3 Req. #2
>
Oh 24 h 48h
(0 min) (1440 min)
0 [%] 100 [%]

e # of reservation plans N =10

— Time frames are selected equidistantly
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Comparison of Co-allocation Success Ratios

Comparison of normal cases

About 0.90 when the load = 50[%)],

over 0.61 when the load = 80 [%]

— Effective for co-allocation of
both resources

-~

|

o
00

N
- UserA-N
0.4
= UserB-N
02 - UserA-S
=>é= JserB-S

Success Ratio (Successt / Total#)
o
(@)}

o

10 20 30 40 50 60 70 80 90 100 [%]ReQuest load
O 144 288 432 576 720 864 1008 1152 1296 1440

Elapsed Time [min Comparison of service levels (SL)

-N : Normal cases
S - Confi d different servi level -N : UserA and B are comparable
- Lontigure erent service leveis -S : UserA is 0.60 and UserB is 0.37

 UserB is set to a low priority when the load = 100[%]
 For each UserB request, # of available resources| _ ;1 take option (C) User priority
is reduced to half amount
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administrator options (A) and (B)

(A) Load balancing (B1) Preference allocation by domain

(Priority : N >S > U)

Resource Utilization

: %
A) 0

/ 489"/ Request

30%
w ut 20% Load
S2
Slte St s NG N N1 10%

(B2) Preference allocation by # of CPUs
(Priority : *3(64) > *2(32) > *1(16) > *0(8))
vc; is set as follows:

(B1) N*=1,S*=10, U* =100
(B2) *3 =1, *2=10, *1 =100, *0=1000

Resource Utilization

6!
. d Request
30“

15y Load

&?)%W Preferred resources are selected first

Resource Utilization
o
D

/6
e # Request —y Can take options (A) and (B)
Site Sl e, . Load
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N practicda Issues
e |nvestigate if planning times are acceptable for an on-

line service
e Compare planning times using

— Additional constraints
— Different IP solvers

e |P solvers
— General IP solver: GLPK (free, but slow)
— SAT-based solver: MiniSat and Sugar++
e Sugar++ enables a SAT solver to solve IP problems
e Experimental settings

CPU: Intel Core2 Quad Q9550 (2.83GHz),
OS: Cent0S 5.0, kernel 2.6.18 x86_64, Memory: 4GB
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Additional constraint are effective MiniSat-st-1 is the best

Acceptable for an on-line service performance

Solver - cO

GLPK-st 0.333 4. 205
MiniSat-st 12.848 216.434
—

MiniSat-st-
GLPK is dominant

— |P solvers are suitable for our algorithm
"-st" : Additional constraints (P, .=2)

"-1": # of SAT executions = 1 (Select only one satisfied solution)
Quality of plans : GLPK > GLPK-st = MiniSat-st > MiniSat-st-1
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Comparison of the Avg. planning times
for each request

Planning times in log scale

1e+06

QOO0 + +

Elapsed Timelmsec]

MiniSAT- st
MiniSAT-st-1
GLPK *

GLPK—st

#

[m]

While MiniSat-st-1
is stable, the others
are disparsed

GLPK / GLPK st/ MiniSat-st / I\/I|n|Sat st- 1

Elapsed Timelmsec]

Planning times from 0 to 10 [sec]

10000

MiniSAT-st |

As reducing the

available resources

planning times
are decreasing

150 200

Raeqguest #

-
,’ . * MiniSAT-st—1
/ . GLPK #*
, . GLPK-st O
® +
lelole] ++ +
+ + o+
o+ + o+ + * + 4 *
* + +
e +*
#* +
6000 [ . o+ ¥
¥
w T H oy
+ *
+ + + + +
. ty Ko ¥ . & h PR
o o 4 + " » .
4000 o * ¥ + 4% + +

The results of MiniSat-st-1

are proportional to the # of

sites in the requirement Types
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e The coverage of IP problems is expanding

— Performance of recent computers and the improvement of
IP solvers

— |P calculation times can be reduced by applying suitable
constraints and approximate solutions

e Qur resource co-allocation model

— The search area of a single GRC can be localized, because
GRCs can consist hierarchically

— The # of variables scales by the # of "computer sites", not
"computers”

— In practical use, additional constraints will increase, e.g.,
latency, execution environment, and required data locations

—Modeling as an IP problem is effective for our model
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They cannot select suitable resources because the first

found resources are selected .
Backtrack-based scheduling algorithm [Ando, Aida. 2007]

— Enables both co-allocation and workflow scheduling

— Co-allocation times become long and lots of resources are blocked,
when the scheduler allocates resources incrementally

Co-allocation algorithm for NorduGrid [EImroth, Tordsson,
2009]

— Search (1) computer sites and (2) paths between the selected sites,
sliding a reservation time frame

— Resource constraints make planning times long
e Co-reservation algorithm based on an optimization problem

Roblitz, 2 .

[Roblitz, 2008] No algorithm can take

— Network model is simple : :
co-allocation options

— Use all of resource information
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e We propose an on-line advance reservation-based

co-allocation algorithm for compute and network
resources

— Modeled as an integer programming (IP) problem
— Enable to apply the user and administrator options
e The experiments showed

— Our algorithm can co-allocate both resources and can take
the administrator options

— Planning times using a general IP solver with additional
constraints are acceptable for an on-line service
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e |mprove our algorithm and conduct further
experiments on the scalability

e Apply sophisticated SLA and economy models and
confirm that our algorithm can also take user options
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