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Why Bother?

Problem: Combat the bird flu virus

Method: Inhibit its function by “gumming up”
Neuraminidase, a surface protein, with an inhibitor

- Neuraminidase helps release progeny viruses from the cell.

Procedure*:

- Search protein surface for likely sites

- Find a molecule that binds there (and only there)

*Landon, et al. Chem. Biol. Drug Des 2008 
##From From New Scientist  New Scientist  www.newscientist.com/channel/health/birdwww.newscientist.com/channel/health/bird--fluflu

Binding site mapping:

- Very compute intensive: Usually run on clusters

- GPU based desktop alternative
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� Rigid Docking on GPU

� Energy Minimization on GPU

� Results



4

Binding Site Mapping
Purpose: Identification of hot spots

Process: Docking small probes
� Rigid Docking
� Energy Minimization

Rationale:
� Hot spots are major contributors to the 

binding energy
� They bind a large variety of small 

molecules

Significance: Very effective for drug-discovery
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Mapping: Two Step Process

� Rigid Docking of Probes into Protein
� Grid-based computation
� Exhaustive 6D search
� Find an approximate conformation

� Local refinement – Energy Minimization
� Model the flexibility in the side-chains

Good fit Collision Poor fit
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FTMap*

� 16 small molecule probes

� Energy minimize 2000 conformations per 
protein-probe complex
� Up to 30 seconds per conformation
� 16 hours per probe!

� Dock each probes into the protein
� 500 rotations – 106 translations per rotation
� 30 minutes on a single CPU

* Brenke R, Kozakov D, Chuang G-Y, Beglov D, Mattos C, and Vajda S. Fragment-based identification of 
druggable "hot spots" of proteins using Fourier domain correlation, Bioinformatics.
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NVIDIA GPU Architecture

Streaming 
Processor (SP)

Streaming 
Multiprocessor (SM)

NVIDIA Tesla C1060 Architecture

• 30 Multiprocessors

• 4 GB Device memory

8 SPs per SM

Device Memory

• 240 Processor cores

• 1.3 GHz Clock

* Source: NVIDIA Corporation
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Memory Hierarchy

CPU Main 
Memory Device 

Memory
Shared 
Memory

3 GB/s

100 GB/s

1000 GB/s

Constant 
Cache

Register Read

On-board On-chip

* Source: NVIDIA Corporation
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CUDA Programming Model

On-board

On-chip
Block of Threads

Grid of Blocks

Thread

Different blocks must be 

independent

Threads within a block can be 

synchronized

* Source: NVIDIA Corporation
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Scoring and Filtering

Pose Score: 3D FFT 

Correlation

Rotation

Grid Assignment

Rigid Docking: Procedure
Protein Probe



13

Perform once

Read Receptor and 
Ligand files

Create receptor grids for different 
energy functions

Read parameter, rotation 
and coefficients

Perform (P + 4) 
forward FFTs

Compute FFT size

Compute complex 
conjugate of FFT grids

Create ligand grids for 
different energy functions

Repeat for each rotation

Repeat for each of (P + 4) grids

Perform forward FFT 
on ligand grid

Modulate the transformed receptor and 
ligand grids

Rotate ligand grid by 
next incremental angle

Accumulate pairwise potential 
product grids

Perform inverse FFT 
on product grid

Perform weighted 
scoring and filtering

Best Fit

desolelecshape EwEwEE 32 ++=

PIPER Rigid Docking Program

� Structural Bioinformatics lab at BU

� Complex energy functions 

� Top scorer in CAPRI* challenge
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Rotation + Grid FFT Corre lation

Accumulation Scoring and Filtering

Up to 22 FFT correlations 
are required

* Janin, J., Henrick, K., Moult, J., Eyck, L., Sternberg, M., Vajda, S., Vakser, I., and Wodak, S. CAPRI: A 
critical assessment of predicted interactions. Proteins, 52 (2003), 2-9
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Rigid Docking on GPUs - Correlation

SMP

Global Memory

Shared 
Memory

SMP

Shared 
Memory

SMP

Shared 
Memory

� Direct Correlation (better than FFT!)
� For small grid sizes
� Replaces FFT, voxel-voxel summation, IFFT

� Each multiprocessor accesses both 
the grids
� Protein grid on the global memory
� Probe grid duplicated on shared memories

� Multiple correlations together
� Voxel represents multiple energy functions

Shape

Elec.

Desol.
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Direct Correlation on GPUs

� Multiple rotations together
� 8 rotations
� Effectively loop-unrolling
� Multiple computations per global memory 

fetch
� 2.7x additional performance improvement

� Shared memory limits the probe size
� With 8 correlations – 8 cubed
� Probe grids are typically 4 cubed

SMP

Global Memory

Shared 
Memory

SMP

Shared 
Memory

SMP

Shared 
Memory

SMP

Shared Memory
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Direct Correlation on GPUs

� Distribution of work among threads / blocks
� Scheme 1: Entire 2D-plane to a thread block
� Scheme 2: Part of the 2D-plane to a thread block
� Both yield similar results

SMP SMP SMP SMP

Result grid

SMP SMP SMP SMP
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Scoring and Filtering on GPUs

� Score Computation
� Divide work among different threads
� Sync and Serialize to find the best-of-

the-best
� Only one multiprocessor utilized

T0 T1 T2 TM-2 TM-1

N3 Scores

T0

Best Score

M

N
3

Shared Memory

� Flagging for exclusion

� Serial code – Exclusion bit-vector

� GPU Solution 1 – Exclusion index array
� GPU Solution 2 – Exclusion bit-vector on  

GPU global memory

1 1 0 0 0 1 0

(N3 entries)

4 5 16 28 45

(100 entries)

1 1 0 0 0 1 0

(N3 entries)
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Convergence?

Energy Minimization

� Minimizing energy between two molecules
� Iterative process
� Optimization moves

� Used to model flexible side chains

Etotal = Evdw + Eelec + Ebond + Eangle + Etorsion

bondednon-bonded

N-body problem with a cut-off
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Looks like MD, but it’s not

Different 
geometry

Different 
computations

� Performed on a local region
� Many fewer atoms, typically few thousand

� Much smaller atom neighborhoods
� Very small cut-off radius

� Move to the next position
� Coordinate adjustments - No motion / velocity updates

� No cell-lists / efficient filtering
� Refinement step; close to dest. - small motions

� Neighbor lists are very sparse, with non-
uniform distribution
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Energy Minimization step of FTMap

1.02%

98.98%

Energy Evaluation Rest

5.38% 0.2%

94.4%

Electrostatics van der Waals Bonded

FTMap Minimization Step Energy evaluation phase

Etotal = Evdw + Eelec + Ebond + Eangle + Etorsion

bondednon-bonded

Absolute time ~ 10 ms per 
iteration (on a single core) 
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Atom Self Energy: Electrostatic energy due to the charge itself

FTMap Electrostatics Model

Etotal = Evdw + Eelec + Ebond + Eangle + Etorsion

Analytic Continuum Electrostatics (ACE)
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FTMap Data Structure - Neighbor Lists

First Atoms Second Atoms Atoms List

n-1

3

0
1
2

2

0

1

2
1

11
14

2
5

4
15

4

12

3

Self Energy

� Random updates for second atoms
� Can’t distribute the atoms list across multiprocessors

� Write conflicts
� Second atom might appear in multiple lists

� Not suitable for parallel implementations

Cycle through 1st

atoms – update 
partial energies of 

both

• Memory conflicts during 
updates 

• Serialization during 
accumulation

0

1

214

11

7

3

5

12

4

6



24

Energy Minimization on GPU – Challenges

� Little to no data reuse (within and across iterations)

� Small computation per iteration

� Multiple accumulations – self energy of each atom must 
be computed

� Large data transfer time

� Random updates – write conflicts

� Accumulation requires serialization

First Atoms Second Atoms Atoms List

n-1

3

0
1
2

2

0

1

2
1

11
14

2
5

4
15

4

12

3

Self Energy

Born Radii – depends on Eself
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Neighbor Lists on GPUs

First 
Atoms

Second 
Atoms

� Separate energy arrays for first and 
second atoms
� Allows parallel updates by multiple threads

� Multiple copies of arrays for second atom
� One in each thread block

� Parallel updates – no conflicts

� First arrays reduced to single values
� Within the shared memory

� Second atoms arrays merged by   
moving to global memory
� Large copy and accumulation time

� Slow

First  
Atom 1

First  
Atom 2

First  
Atom 3

Shared 
Memory for 
First Atoms

Shared 
Memory for 

Second Atoms

First 
Atom 0

Global Memory
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Modified Data Structure - Pairs List

� 2D neighbor         1D pair list
� Each pair contains atom indices and types

First Atoms Second Atoms

Atom 1 Atom 2Pair # Atom 1

Atom index

Atom 2

Atom Type

0

1
2
3
4

5
6

0
0
0

0
1
1
2

7
8

9

2
2

3

2
1

11
14

2

5
4

15
12

4

T5

T5
T5
T5
T3

T3
T1
T1
T1

T5

T1
T3
T2
T4

T1

T3
T8

T7

T4

T8

� Compute partial energies in parallel

� Distribute pairs across multiple threads
� More uniform work distribution

� Perform accumulations serially
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Pairs List on GPUs – Initial Attempts

� Pairs distributed on different threads
� Energy of an atom computed in different multiprocessors
� Serialization during accumulation

� Accumulation on GPU 
� From global memory: Slow

� Accumulation on host 
� Fast, but requires energy arrays to be 

transferred every iteration
� 2x-3x speedup

Pair id Atom 1

Atom index

Atom 2 Atom 1 Atom 2

Self energy

0

1
2

3
4

5
6

0

0

0

0
1

1
2

7
8

9

2
2

3

2

1

11

14
2

5
4

15
12

4
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Pairs List on GPUs – Improved Scheme

Pairs list with two changes

� Conflicts due to random occurrence of 
second atoms

� Split forward and reverse pair list

� Process only the first atom of each list

� Indeterminate distribution requires 
serialization during accumulation

� Statically map the pairs onto GPU threads

� New data structure: Assignment tables

Pair id Atom 1

Atom index

Atom 2 Atom 1 Atom 2

Self energy

0

1
2

3
4

5
6

0

0

0

0
1

1
2

7
8

9

2
2

3

2

1

11

14
2

5
4

15
12

4
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Split Pairs List

Pair id Atom 1

Atom index

Atom 2 Atom 1 Atom 2

Self energy

0
1
2
3
4

5
6

0

0
0
0
1
1
2

7
8

9

2
2

3

2

1
11
14
2
5
4

15
12

4

� Forward list: Same as before
� Reverse list: Treat every second atom as 

a first atom

� Process only the first atoms of each list
� Adds determinism => Better distribution

Pair id Atom 1

Atom index

Atom 2 Atom 1 Atom 2

Self energy

0

1
2
3
4

5
6

1

2
2

4
4
5

11
7
8

9

12
14
15

0

0
1

2
3
1
0
2
0
2

Forward List

Reverse List



30

Static Mapping - Assignment Table

� Pairs can be grouped by first atom

� Groups mapped to different thread blocks
� Look for next block with enough threads

� One pair per thread (multiple if Npair > Nthreads)

� Reverse Assignment table for the second atoms

Thread 
Block 0

Thread 
Block 1

Group 
0

Group 
3
Group 
1

Group 
2

Num. 
Atoms

Pair Id Atom 
1

0
1
2
3
4
5
6

0

0
0
0
3
1
1

7
8

9

2
2
2

2

1
11
14
4
2
5
4

15
12

Thread 
Id

0
1
2
3
9
4
5
6
7
8

Master

1

0
0
0
1
1
0
1
0
0

4

4
4
4
1
2
2
3
3
3

Atom 
2

Does not fit 
on TB_0

Unused threads 
used by next group
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Computing and Accumulating Energies

� Threads store partial energies in shared memory
� Address = Local Thread Id

Master 
Thread 
Tid=5

Master 
Thread 
Tid=12

Master 
Thread  
Tid=0

Global 
MemoryNum.   

Atoms
Pair Id Atom 1

0

1

2

3
4

0

0

0
0

3

2

1

11
14

4

Thread Id

0

1

2

3

9

Master

1

0

0
0

1

4

4

4
4

1

Atom 2

� Master thread performs accumulation
� ‘N’ locations starting from its thread id

� Multiple parallel accumulations per 
thread block (from shared memory)

Shared 
Memory

0

Num_Thr - 1

Group 0

Group 1

Group 2
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Outline
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� Energy Minimization

� Overview of NVIDIA GPUs / CUDA

� Rigid Docking on GPUs - PIPER

� Energy Minimization on GPUs - FTMap

� Results
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Results - Speedups

Computation 
(Per Rotation)

Serial Runtime 
(ms)

GPU Runtime 
(ms)

Speedup

vs. 1 core vs. 4 cores*

Rotation + Grid 
Assignment

80 80 1x --

Correlations 3600 13.5 267x 70x

Accum. Of Desolvation 
Terms

180 1 180x --

Scoring and Filtering 200 30 6.67x --

Total time per rotation 4060 125.5 32.6x 11x

Speedups for Rigid Docking Step
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Results - Speedups

Computation Serial Runtime (ms) GPU Runtime* (ms) Speedup

Self Energy 6.15 0.23 26.7x

Pairwise Interaction 2.75
0.19 17x

van der Waals 0.5

Force Updates 0.95 0.14 6.7x

Optimization move 0.005 0.005 1x

* Overall Speedup on EM computations : 18.5x

* Overall FTMap speedup (including overhead): 15x

2260 atoms

9780 atom-pairs

Speedups for Energy Minimization Step

* GPU runtimes include data transfer time
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Results – Precision Analysis

� Single vs Double Precision
� RMSD error on force values for first iteration: 10-6

� Convergence in 50 iterations (as opposed to 600)
� Error on final energy and force values

� Energy : 10-3

� Forces : 10-5

� Error on atom coordinates after minimization
� 0.5 Å

� Exact match for double precision
� Atom coordinates within 10-5 Å

� More complex mapping on GPU – Similar speedup numbers
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Conclusion

� GPUs can deliver high performance
� Even for double precision computations

� To obtain good performance:
� Alternate algorithms are often needed

� Restructuring of data-structures is crucial

� Efficient use of memory hierarchy is essential

� Getting it right on the GPU is easy …
� … getting good performance is not so much!
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Thank You!


