Fast Binding Site Mapping using
GPUs and CUDA

Bharat Sukhwani Martin C. Herbordt

Computer Architecture and Automated Design Laboratory
Department of Electrical and Computer Engineering
Boston University
http://www.bu.edu/caadlab

* This work supported, in part, by the U.S. NIH/NCRR

Why Bother?

Problem: Combat the bird flu virus

Method: Inhibit its function by “gumming up”
Neuraminidase, a surface protein, with an inhibitor

- Neuraminidase helps release progeny viruses from the cell.

Procedure*:
- Search protein surface for likely sites
- Find a molecule that binds there (and only there)

Binding site mapping:
- Very compute intensive: Usually run on clusters
- GPU based desktop alternative

*Landon, et al. Chem. Biol. Drug Des 2008
*From New Scientist www.newscientist.com/channel/health/bird-flu

Outline

= Qverview of Binding Site Mapping
= Rigid Docking
= Energy Minimization

= Qverview of NVIDIA GPUs / CUDA
Rigid Docking on GPU
Energy Minimization on GPU

Results

Binding Site Mapping

Purpose: ldentification of hot spots

Significance: Very effective for drug-discover

Rationale:

= Hot spots are major contributors to the
binding energy

= They bind a large variety of small
molecules

Process: Docking small probes e
= Rigid Docking o f.j Ho™
= Energy Minimization

Ha—CH, o

e 0 O X

Mapping: Two Step Process

= Rigid Docking of Probes into Protein

= @rid-based computation
= Exhaustive 6D search @ ~
= Find an approximate conformation

Good fit Collision Poor fit

= |ocal refinement — Energy Minimization
= Model the flexibility in the side-chains

FTMap*

= 16 small molecule probes wo-on () e "y
| | o ﬂj HO™ NH;
= Dock each probes into the protein o

HaG—CH, 0

= 500 rotations — 10° translations per rotation ﬁj e
= 30 minutes on a single CPU il

= Energy minimize 2000 conformations per

protein-probe complex
= Up to 30 seconds per conformation
= 16 hours per probe!

* Brenke R, Kozakov D, Chuang G-Y, Beglov D, Mattos C, and Vajda S. Fragment-based identification of
druggable "hot spots" of proteins using Fourier domain correlation, Bioinformatics.

Outline

Overview of NVIDIA GPUs / CUDA

NVIDIA GPU Architecture

- B

Streaming
Processor (SP)

Streaming
Multiprocessor (SM)

8 SPs per SM NVIDIA Tesla C1060 Architecture

e 30 Multiprocessors e 240 Processor cores
e 4 GB Device memory e 1.3 GHz Clock

* Source: NVIDIA Corporation

Memory Hierarchy

i

| /
i v
On-board On-chip

* Source: NVIDIA Corporation

CUDA Programming Model

Thread

Block of Threads

Grid of Blocks

* Source: NVIDIA Corporation

Thread

§ ' Threads within a block can be

Block (1, 1)

synchronized

-

memory

LA A J

/ Different blocks must be

\Tdn

%k (0, 0)

Block (1, 0) | Block {é 0)

independent

Block {‘ 1)

Block (1,1) | Blgck (2, 1)

» Global memory

Per-block shared

On-chip

On-board

10

Outline

= Rigid Docking on GPU

11

Rigid Docking: Procedure

Protein
(
\ N
AVHIAN
\)
\ ,//
\-_

[@—
[Ty ll
‘ |

o
@
—1®
— e ry ¢
$TTET

Probe

Rotation

v

Grid Assignment

Pose Score: 3D FFT
Correlation

Scoring and Filtering

X
[J

X
[

12

PIPER Rigid Docking Program

2.4% 2.3% 2.3%

= Structural Bioinformatics lab at BU
= Complex energy functions

= Top scorer in CAPRI challenge

O Rotation + Grid mFFT Correlation
O Accumulation OScoring and Filtering
E = Eshape + W2Eelec + W3Edesol
E

= Perform once .
i = F attr 1E o / E e e \ Repeat for each rotation
[Ligand files] [Rotate ligand grid by]
next incremental angle

[Read parameter, rotation}

and coefficients Repeat for each of (P + 4) gnds

E = Eborn +E

elec coulomb

[Compute FFT size] _
[Create receptor grids for different] _
energy functions
Up tO 22 FFT Corre|ati0ns [Create ligand grids for]
are required different energy functions \ — /
I v

Best Fit

"U

* Janin, J., Henrick, K., Moult, J., Eyck, L., Sternberg, M., Vajda, S., Vakser, I., and Wodak, S. CAPRI: A
critical assessment of predicted interactions. Proteins, 52 (2003), 2-9 13

Rigid Docking on GPUs - Correlation

= Direct Correlation (better than FFT!)

= For small grid sizes
= Replaces FFT, voxel-voxel summation, IFFT

= Each multiprocessor accesses both
the grids

= Protein grid on the global memory
* Probe grid duplicated on shared memories

= Multiple correlations together

SMP

SMP

SMP

Shared
Memory

il

Shared ||, ..
Memory

il

Shared
Memory

il

Global Memory

Shape

—-* Elec.

= Voxel represents multiple energy functions

Desol.

Direct Correlation on GPUs

= Shared memory limits the probe size
= With 8 correlations — 8 cubed
= Probe grids are typically 4 cubed

= Multiple rotations together

SMP N\, SMP SMP

Shared ared ||...|| Shared
Memory Menhory Memory
i | L6

AN

Global Memo\

= 8 rotations
= Effectively loop-unrolling

= Multiple computations per global memory
fetch

= 2.7x additional performance improvement

SMP

Shared Memory

,,,I y e 4 ,’,’,” ,,’,”
va
1

11' ’I’I’I’

15

Direct Correlation on GPUs

= Distribution of work among threads / blocks
= Scheme 1: Entire 2D-plane to a thread block
= Scheme 2: Part of the 2D-plane to a thread block
= Both yield similar results

Result grid

[T

\l_§/
N\ == N\ ESRRE=
- SMP i |2 SMP 3 | SMP - === SMP - SMP 3 £ SMP i [SMP{ «ees [SMP]

16

Scoring and Filtering on GPUs

* Score Computation = "?ST‘”
= Divide work among different threads F/f TW —) v
= Sync and Serialize to find the best-of- [S |'1
the-best Shared Memory
= Only one multiprocessor utilized TWO
: ; - Best*Score
= Flagging for exclusion [z
= Serial code — Exclusion bit-vector [ails |0(N| in]ries)... [[o]

(100 entries)

= GPU Solution 1 — Exclusion index array ~ [&1s Tk [z [[as]

= GPU Solution 2 — Exclusion bit-vector on (NS entries)

< J1]o]

GPU global memory ~ \lile [or]o]

17

Outline

Energy Minimization on GPU

18

Energy Minimization

= Minimizing energy between two molecules

= lterative process o s

= Optimization moves

= Used to model flexible side chains . <
N-body problem with a cut-off Etotal = [vdw + [felec 4 fbond + Fangle 4 Ftorsion
. | e non-bonded bonded

I ,-IH;ngF
()
®,I.fFBond

Etotaf :< P T(’Zﬂm
(+)
@AHPairs

19

Looks like MD, but it’'s not

= Performed on a local region

= Many fewer atoms, typically few thousand ,
Different

= Much smaller atom neighborhoods geometry
= Very small cut-off radius

J
= Move to the next position
= Coordinate adjustments - No motion / velocity updates

\

= No cell-lists / efficient filtering

: . > Different
= Refinement step, close to dest. - small motions

computations

= Neighbor lists are very sparse, with non-
uniform distribution J

20

Energy Minimization step of FTMap

1.02% 5.38% 0.2%
B Energy Evaluation B Rest O Electrostatics O van der Waals B Bonded
FTMap Minimization Step Energy evaluation phase

Absolute time ~ 10 ms per {E“’ta’ Evaw + EGD fbond + Fangle 4 EtorSIonJ

iteration (on a single core)

on- bonde bonded

21

FTMap Electrostatics Model

/~ N\
[Etota/ = Fvdw 4 %elec)_ [Ebond + [Fangle 4 [torsion]
St

Analytic Continuum Electrostatics (ACE)

Atom Self Energy: Electrostatic energy due to the charge itself

2 [15 3 4
self qi self self (0'3(} Tqiv rz
Ei = 28—1R+ Z Eik ‘ Eik e + k k

1 1
PR AT A @ 87w T T My

Pairwise interaction — Generalized Born eqn.: Electrostatic energy due to the presence
of other charges

Em 33 Y L0066 0 a4,

i

2
jzi i j#i —| i
) 4aiaj
v

7]

Born Radii — depends on Eseff

22

FTMap Data Structure - Neighbor Lists

First Atoms Second Atoms Atoms List Self Energy
D) 0

0 2
== 1
e °7 Cycle through 18t ; N u /E‘\
atoms — update - — - ~
- \
/

both L
n-1

~

W [N —

N

(¢

¢ partial energies of

b | —h
o™

3

= Random updates for second atoms

= Can't distribute the atoms list across multiprocessors
» Memory conflicts during

= Write conflicts updates
= Second atom might appear in multiple lists > * Serialization during

accumulation
= Not suitable for parallel implementations

23

Energy Minimization on GPU — Challenges

(Little to no data reuse (within and across iterations) \

: : . Inherent to the
= Small computation per iteration i o

algorithm
= Multiple accumulations — self energy of each atom must
be COmpu’[ed Born Radii — depends on Es*" \

int 4qi9 j \ qi9 j
E self gto= 332) ——- 166 ¢ N
+]#l z] _[/ j
g 2 da,a
K l b s aia e /

/ Large da‘ta transfer ‘tl me ArCh IteCtu re First Atoms Second Atoms Atoms List Self Energ\

related ? : 0
= Random updates — write conflicts 2 \ 1 >)§
3 R 2 N
. . . ' . 5 \
= Accumulation requires serialization L =4 :
- =N x

24

Neighbor Lists on GPUs

= Separate energy arrays for first and
second atoms

First Second
Atoms Atoms

S
= Allows parallel updates by multiple threads __b:g
- =N
= Multiple copies of arrays for second atom
= One in each thread block Shared Shared

Memory for Memory for

= Parallel updates — no conflicts First AtorpsSecond Atoms
= First arrays reduced to single values First Global Memory
= Within the shared memory
First
= Second atoms arrays merged by Atom 1

moving to global memory First

= Large copy and accumulation time AloTi2

= Slow First

Atom 3

==

25

Modified Data Structure - Pairs List

= 2D neighbor mm) 1D pair list

= Each pair contains atom indices and types

= Distribute pairs across multiple threads

= More uniform work distribution

= Compute partial energies in parallel

= Perform accumulations serially

First Atoms Second Atoms

Ny
=¢
=

[-

Atom index Atom Type
Pair # | Atom 1 Atom 2 Atom 1 Atom 2
0 0 2 T5 T1
1 0 1 T5 T3
2 0 11 T5 T2
3 0 14 T5 T4
4 1 2 T3 T1
5 1 5 T3 T3
6 2 4 T1 T8
7 2 15 T1 T7
8 2 12 T1 T4
9 3 4 T5 T8

26

Pairs List on GPUs — Initial Attempts

= Pairs distributed on different threads
= Energy of an atom computed in different multiprocessors
= Serialization during accumulation

Atom index Self energy

Pair id Atom 1 Atom 2 Atom 1 Atom 2

0 2

o

= Accumulation on GPU

1

11

= From global memory: Slow

14

2

5

= Accumulation on host

4

15

12

OO IN|D|C1| W [N |=
WINININ[= =IO |O|C

= Fast, but requires energy arrays to be

4

transferred every iteration
= 2x-8x speedup

27

Pairs List on GPUs — Improved Scheme

Pairs list with two changes

= Conflicts due to random occurrence of Atom index | _Self energy
Pairid | Atom 1 | Atom 2 | Atom 1 | Atom 2
second atoms o[70NT77N
2 0 11
= Split forward and reverse pair list —
5 1 5
= Process only the first atom of each list T
8 2 12
9 3 4

= |ndeterminate distribution requires
serialization during accumulation

= Statically map the pairs onto GPU threads

= New data structure: Assignment tables

28

Split Pairs List

= Forward list: Same as before Forward List
. Atom index Self energy
* Reverse list: Treat every second atom as [Paid [Aem T sanz [Atom [atom2
a first atom o \—
3 0 \/
4 1 IC2) y
5 1] 5 N
_ _ 6 2 || /a '\
= Process only the first atoms of each list = —
1) L1 ! 9 3]) 4 !
= Adds determinism => Better distribution / _
Reverse List

29

Static Mapping - Assignment Table

= Pairs can be grouped by first atom

= Groups mapped to different thread blocks
= ook for next block with enough threads

= One pair per thread (multiple if N, > Ny ca46)
= Reverse Assignment table for the second atoms

1 Num.
Thread | PairIld| Atom | Atom |Master Atoms
Id 1 2
- 0 0 0 2 1 4
Thread | —+—— 0 1 0 4 Group
Block 0 2 2 0 11 g 2 0 Unused threads
3 0 14
T4 : B i] - ‘m used by next group
(3 4 1 2 1 2 Does not fit
6 5 . 5 0 2 |G Broup >
Thread onTB O
Block 1< 7 6 2 4 1 3 —
8 7 2 15 0 3 Group
SS 9 8 2 12 0 3 2

30

Computing and Accumulating Energies

= Threads store partial energies in shared memory

= Address = Local Thread Id

Shared
P L e w8 Global
Num. Memory
Thread Id | Pairld | Atom1 | Atom2 (Mastca (Atoma) - Memory
0 0 0 2 1 1 0
; ; 0 1 0 4 Master
0 11 0 4 Group 0
3 3 0 14 0 4 P Thread
4 9 3 4 1 1 < Tid=0

= Master thread performs accumulation
= ‘N’locations starting from its thread id

Group 1 <

= Multiple parallel accumulations per F
thread block (from shared memory)

Group 2<

Num_Thr-k1

Master

Thread

Tid=5

Master

Thread

Tid=12

S AN

}

31

Outline

Results

32

Results - Speedups

Speedups for Rigid Docking Step

Computation

Serial Runtime | GPU Runtime Speedup
(Per Rotation) (ms) (ms) vs. 1 core | vs. 4 cores*
Rotat!on + Grid 80 30 1x
Assignment
Correlations 3600 13.5 267X 70x
Accum. Of Desolvation 180] 180x
Terms
Scoring and Filtering 200 30 6.67x
Total time per rotation 4060 125.5 32.6x 11x

33

Results - Speedups

2260 atoms
9780 atom-pairs

Speedups for Energy Minimization Step

Computation Serial Runtime (ms) | GPU Runtime* (ms) | Speedup
Self Energy 6.15 0.23 26.7x
Pairwise Interaction 2.75
0.19 17x
van der Waals 0.5
Force Updates 0.95 0.14 6.7x
Optimization move 0.005 0.005 1x
J -
* Overall Speedup on EM computations : 18.5x
L * Overall FTMap speedup (including overhead): 15x

* GPU runtimes include data transfer time

34

Results — Precision Analysis

= Single vs Double Precision

RMSD error on force values for first iteration: 106
Convergence in 50 iterations (as opposed to 600)
Error on final energy and force values

= Energy a
= Forces 2100

= Error on atom coordinates after minimization
= 0.5A

= Exact match for double precision

= Atom coordinates within 105 A
= More complex mapping on GPU — Similar speedup numbers

35

Conclusion

= GPUs can deliver high performance

= Even for double precision computations

= To obtain good performance:
= Alternate algorithms are often needed
= Restructuring of data-structures is crucial

= FEfficient use of memory hierarchy is essential

= Getting it right on the GPU is easy ...

= ... getting good performance is not so much!

36

Thank You!

37

