
Fast Binding Site Mapping using
GPUs and CUDA

Bharat Sukhwani Martin C. Herbordt

Computer Architecture and Automated Design Laboratory
Department of Electrical and Computer Engineering

Boston University
http://www.bu.edu/caadlab

* This work supported, in part, by the U.S. NIH/NCRR

2

Why Bother?

Problem: Combat the bird flu virus

Method: Inhibit its function by “gumming up”
Neuraminidase, a surface protein, with an inhibitor

- Neuraminidase helps release progeny viruses from the cell.

Procedure*:

- Search protein surface for likely sites

- Find a molecule that binds there (and only there)

*Landon, et al. Chem. Biol. Drug Des 2008
##From From New Scientist New Scientist www.newscientist.com/channel/health/birdwww.newscientist.com/channel/health/bird--fluflu

Binding site mapping:

- Very compute intensive: Usually run on clusters

- GPU based desktop alternative

3

Outline

� Overview of Binding Site Mapping
� Rigid Docking
� Energy Minimization

� Overview of NVIDIA GPUs / CUDA

� Rigid Docking on GPU

� Energy Minimization on GPU

� Results

4

Binding Site Mapping
Purpose: Identification of hot spots

Process: Docking small probes
� Rigid Docking
� Energy Minimization

Rationale:
� Hot spots are major contributors to the

binding energy
� They bind a large variety of small

molecules

Significance: Very effective for drug-discovery

5

Mapping: Two Step Process

� Rigid Docking of Probes into Protein
� Grid-based computation
� Exhaustive 6D search
� Find an approximate conformation

� Local refinement – Energy Minimization
� Model the flexibility in the side-chains

Good fit Collision Poor fit

6

FTMap*

� 16 small molecule probes

� Energy minimize 2000 conformations per
protein-probe complex
� Up to 30 seconds per conformation
� 16 hours per probe!

� Dock each probes into the protein
� 500 rotations – 106 translations per rotation
� 30 minutes on a single CPU

* Brenke R, Kozakov D, Chuang G-Y, Beglov D, Mattos C, and Vajda S. Fragment-based identification of
druggable "hot spots" of proteins using Fourier domain correlation, Bioinformatics.

7

Outline

� Overview of Binding Site Mapping
� Rigid Docking
� Energy Minimization

� Overview of NVIDIA GPUs / CUDA

� Rigid Docking on GPU

� Energy Minimization on GPU

� Results

8

NVIDIA GPU Architecture

Streaming
Processor (SP)

Streaming
Multiprocessor (SM)

NVIDIA Tesla C1060 Architecture

• 30 Multiprocessors

• 4 GB Device memory

8 SPs per SM

Device Memory

• 240 Processor cores

• 1.3 GHz Clock

* Source: NVIDIA Corporation

9

Memory Hierarchy

CPU Main
Memory Device

Memory
Shared
Memory

3 GB/s

100 GB/s

1000 GB/s

Constant
Cache

Register Read

On-board On-chip

* Source: NVIDIA Corporation

10

CUDA Programming Model

On-board

On-chip
Block of Threads

Grid of Blocks

Thread

Different blocks must be

independent

Threads within a block can be

synchronized

* Source: NVIDIA Corporation

11

Outline

� Overview of Binding Site Mapping
� Rigid Docking
� Energy Minimization

� Overview of NVIDIA GPUs / CUDA

� Rigid Docking on GPU

� Energy Minimization on GPU

� Results

12

Scoring and Filtering

Pose Score: 3D FFT

Correlation

Rotation

Grid Assignment

Rigid Docking: Procedure
Protein Probe

13

Perform once

Read Receptor and
Ligand files

Create receptor grids for different
energy functions

Read parameter, rotation
and coefficients

Perform (P + 4)
forward FFTs

Compute FFT size

Compute complex
conjugate of FFT grids

Create ligand grids for
different energy functions

Repeat for each rotation

Repeat for each of (P + 4) grids

Perform forward FFT
on ligand grid

Modulate the transformed receptor and
ligand grids

Rotate ligand grid by
next incremental angle

Accumulate pairwise potential
product grids

Perform inverse FFT
on product grid

Perform weighted
scoring and filtering

Best Fit

desolelecshape EwEwEE 32 ++=

PIPER Rigid Docking Program

� Structural Bioinformatics lab at BU

� Complex energy functions

� Top scorer in CAPRI* challenge

E shape = E attr + w
1
E repul

coulombbornelec EEE +=

∑
−

=

=

1

0

_

P

k

kpairpotdesol EE

2.4%

93%

2.3%2.3%

Rotation + Grid FFT Corre lation

Accumulation Scoring and Filtering

Up to 22 FFT correlations
are required

* Janin, J., Henrick, K., Moult, J., Eyck, L., Sternberg, M., Vajda, S., Vakser, I., and Wodak, S. CAPRI: A
critical assessment of predicted interactions. Proteins, 52 (2003), 2-9

14

Rigid Docking on GPUs - Correlation

SMP

Global Memory

Shared
Memory

SMP

Shared
Memory

SMP

Shared
Memory

� Direct Correlation (better than FFT!)
� For small grid sizes
� Replaces FFT, voxel-voxel summation, IFFT

� Each multiprocessor accesses both
the grids
� Protein grid on the global memory
� Probe grid duplicated on shared memories

� Multiple correlations together
� Voxel represents multiple energy functions

Shape

Elec.

Desol.

15

Direct Correlation on GPUs

� Multiple rotations together
� 8 rotations
� Effectively loop-unrolling
� Multiple computations per global memory

fetch
� 2.7x additional performance improvement

� Shared memory limits the probe size
� With 8 correlations – 8 cubed
� Probe grids are typically 4 cubed

SMP

Global Memory

Shared
Memory

SMP

Shared
Memory

SMP

Shared
Memory

SMP

Shared Memory

16

Direct Correlation on GPUs

� Distribution of work among threads / blocks
� Scheme 1: Entire 2D-plane to a thread block
� Scheme 2: Part of the 2D-plane to a thread block
� Both yield similar results

SMP SMP SMP SMP

Result grid

SMP SMP SMP SMP

17

Scoring and Filtering on GPUs

� Score Computation
� Divide work among different threads
� Sync and Serialize to find the best-of-

the-best
� Only one multiprocessor utilized

T0 T1 T2 TM-2 TM-1

N3 Scores

T0

Best Score

M

N
3

Shared Memory

� Flagging for exclusion

� Serial code – Exclusion bit-vector

� GPU Solution 1 – Exclusion index array
� GPU Solution 2 – Exclusion bit-vector on

GPU global memory

1 1 0 0 0 1 0

(N3 entries)

4 5 16 28 45

(100 entries)

1 1 0 0 0 1 0

(N3 entries)

18

Outline

� Overview of Binding Site Mapping
� Rigid Docking
� Energy Minimization

� Overview of NVIDIA GPUs / CUDA

� Rigid Docking on GPU

� Energy Minimization on GPU

� Results

19

Convergence?

Energy Minimization

� Minimizing energy between two molecules
� Iterative process
� Optimization moves

� Used to model flexible side chains

Etotal = Evdw + Eelec + Ebond + Eangle + Etorsion

bondednon-bonded

N-body problem with a cut-off

20

Looks like MD, but it’s not

Different
geometry

Different
computations

� Performed on a local region
� Many fewer atoms, typically few thousand

� Much smaller atom neighborhoods
� Very small cut-off radius

� Move to the next position
� Coordinate adjustments - No motion / velocity updates

� No cell-lists / efficient filtering
� Refinement step; close to dest. - small motions

� Neighbor lists are very sparse, with non-
uniform distribution

21

Energy Minimization step of FTMap

1.02%

98.98%

Energy Evaluation Rest

5.38% 0.2%

94.4%

Electrostatics van der Waals Bonded

FTMap Minimization Step Energy evaluation phase

Etotal = Evdw + Eelec + Ebond + Eangle + Etorsion

bondednon-bonded

Absolute time ~ 10 ms per
iteration (on a single core)

22

Atom Self Energy: Electrostatic energy due to the charge itself

FTMap Electrostatics Model

Etotal = Evdw + Eelec + Ebond + Eangle + Etorsion

Analytic Continuum Electrostatics (ACE)

∑
≠

+=

ik

self
ik

is

iself
i E

R

q
E

ε2

2 4

44

322

8

~
2

2

+
+=

−

ikik

ikki

r

ik

iself

ik
r

rVq
e

q
E ik

ik

µπ

τ

ω

τ σ

Pairwise interaction – Generalized Born eqn.:

Born Radii – depends on Eself

∑∑
≠

−≠

+

−=

ij r

jiij

ji

ij ij

ji
ij

ji

ij

er

qq

r

qq
E

αα
αα

τ

42

int

2

166332

Electrostatic energy due to the presence
of other charges

23

FTMap Data Structure - Neighbor Lists

First Atoms Second Atoms Atoms List

n-1

3

0
1
2

2

0

1

2
1

11
14

2
5

4
15

4

12

3

Self Energy

� Random updates for second atoms
� Can’t distribute the atoms list across multiprocessors

� Write conflicts
� Second atom might appear in multiple lists

� Not suitable for parallel implementations

Cycle through 1st

atoms – update
partial energies of

both

• Memory conflicts during
updates

• Serialization during
accumulation

0

1

214

11

7

3

5

12

4

6

24

Energy Minimization on GPU – Challenges

� Little to no data reuse (within and across iterations)

� Small computation per iteration

� Multiple accumulations – self energy of each atom must
be computed

� Large data transfer time

� Random updates – write conflicts

� Accumulation requires serialization

First Atoms Second Atoms Atoms List

n-1

3

0
1
2

2

0

1

2
1

11
14

2
5

4
15

4

12

3

Self Energy

Born Radii – depends on Eself

∑∑
≠

−≠

+

−=

ij r

jiij

ji

ij ij

ji
ij

ji

ij

er

qq

r

qq
E

αα
αα

τ

42

int

2

166332

Inherent to the
algorithm

Architecture
related

∑
≠

+=

ik

self

ik
is

iself
i E

R

q
E

ε2

2

25

Neighbor Lists on GPUs

First
Atoms

Second
Atoms

� Separate energy arrays for first and
second atoms
� Allows parallel updates by multiple threads

� Multiple copies of arrays for second atom
� One in each thread block

� Parallel updates – no conflicts

� First arrays reduced to single values
� Within the shared memory

� Second atoms arrays merged by
moving to global memory
� Large copy and accumulation time

� Slow

First
Atom 1

First
Atom 2

First
Atom 3

Shared
Memory for
First Atoms

Shared
Memory for

Second Atoms

First
Atom 0

Global Memory

26

Modified Data Structure - Pairs List

� 2D neighbor 1D pair list
� Each pair contains atom indices and types

First Atoms Second Atoms

Atom 1 Atom 2Pair # Atom 1

Atom index

Atom 2

Atom Type

0

1
2
3
4

5
6

0
0
0

0
1
1
2

7
8

9

2
2

3

2
1

11
14

2

5
4

15
12

4

T5

T5
T5
T5
T3

T3
T1
T1
T1

T5

T1
T3
T2
T4

T1

T3
T8

T7

T4

T8

� Compute partial energies in parallel

� Distribute pairs across multiple threads
� More uniform work distribution

� Perform accumulations serially

27

Pairs List on GPUs – Initial Attempts

� Pairs distributed on different threads
� Energy of an atom computed in different multiprocessors
� Serialization during accumulation

� Accumulation on GPU
� From global memory: Slow

� Accumulation on host
� Fast, but requires energy arrays to be

transferred every iteration
� 2x-3x speedup

Pair id Atom 1

Atom index

Atom 2 Atom 1 Atom 2

Self energy

0

1
2

3
4

5
6

0

0

0

0
1

1
2

7
8

9

2
2

3

2

1

11

14
2

5
4

15
12

4

28

Pairs List on GPUs – Improved Scheme

Pairs list with two changes

� Conflicts due to random occurrence of
second atoms

� Split forward and reverse pair list

� Process only the first atom of each list

� Indeterminate distribution requires
serialization during accumulation

� Statically map the pairs onto GPU threads

� New data structure: Assignment tables

Pair id Atom 1

Atom index

Atom 2 Atom 1 Atom 2

Self energy

0

1
2

3
4

5
6

0

0

0

0
1

1
2

7
8

9

2
2

3

2

1

11

14
2

5
4

15
12

4

29

Split Pairs List

Pair id Atom 1

Atom index

Atom 2 Atom 1 Atom 2

Self energy

0
1
2
3
4

5
6

0

0
0
0
1
1
2

7
8

9

2
2

3

2

1
11
14
2
5
4

15
12

4

� Forward list: Same as before
� Reverse list: Treat every second atom as

a first atom

� Process only the first atoms of each list
� Adds determinism => Better distribution

Pair id Atom 1

Atom index

Atom 2 Atom 1 Atom 2

Self energy

0

1
2
3
4

5
6

1

2
2

4
4
5

11
7
8

9

12
14
15

0

0
1

2
3
1
0
2
0
2

Forward List

Reverse List

30

Static Mapping - Assignment Table

� Pairs can be grouped by first atom

� Groups mapped to different thread blocks
� Look for next block with enough threads

� One pair per thread (multiple if Npair > Nthreads)

� Reverse Assignment table for the second atoms

Thread
Block 0

Thread
Block 1

Group
0

Group
3
Group
1

Group
2

Num.
Atoms

Pair Id Atom
1

0
1
2
3
4
5
6

0

0
0
0
3
1
1

7
8

9

2
2
2

2

1
11
14
4
2
5
4

15
12

Thread
Id

0
1
2
3
9
4
5
6
7
8

Master

1

0
0
0
1
1
0
1
0
0

4

4
4
4
1
2
2
3
3
3

Atom
2

Does not fit
on TB_0

Unused threads
used by next group

31

Computing and Accumulating Energies

� Threads store partial energies in shared memory
� Address = Local Thread Id

Master
Thread
Tid=5

Master
Thread
Tid=12

Master
Thread
Tid=0

Global
MemoryNum.

Atoms
Pair Id Atom 1

0

1

2

3
4

0

0

0
0

3

2

1

11
14

4

Thread Id

0

1

2

3

9

Master

1

0

0
0

1

4

4

4
4

1

Atom 2

� Master thread performs accumulation
� ‘N’ locations starting from its thread id

� Multiple parallel accumulations per
thread block (from shared memory)

Shared
Memory

0

Num_Thr - 1

Group 0

Group 1

Group 2

32

Outline

� Overview of Binding Site Mapping
� Rigid Docking
� Energy Minimization

� Overview of NVIDIA GPUs / CUDA

� Rigid Docking on GPUs - PIPER

� Energy Minimization on GPUs - FTMap

� Results

33

Results - Speedups

Computation
(Per Rotation)

Serial Runtime
(ms)

GPU Runtime
(ms)

Speedup

vs. 1 core vs. 4 cores*

Rotation + Grid
Assignment

80 80 1x --

Correlations 3600 13.5 267x 70x

Accum. Of Desolvation
Terms

180 1 180x --

Scoring and Filtering 200 30 6.67x --

Total time per rotation 4060 125.5 32.6x 11x

Speedups for Rigid Docking Step

34

Results - Speedups

Computation Serial Runtime (ms) GPU Runtime* (ms) Speedup

Self Energy 6.15 0.23 26.7x

Pairwise Interaction 2.75
0.19 17x

van der Waals 0.5

Force Updates 0.95 0.14 6.7x

Optimization move 0.005 0.005 1x

* Overall Speedup on EM computations : 18.5x

* Overall FTMap speedup (including overhead): 15x

2260 atoms

9780 atom-pairs

Speedups for Energy Minimization Step

* GPU runtimes include data transfer time

35

Results – Precision Analysis

� Single vs Double Precision
� RMSD error on force values for first iteration: 10-6

� Convergence in 50 iterations (as opposed to 600)
� Error on final energy and force values

� Energy : 10-3

� Forces : 10-5

� Error on atom coordinates after minimization
� 0.5 Å

� Exact match for double precision
� Atom coordinates within 10-5 Å

� More complex mapping on GPU – Similar speedup numbers

36

Conclusion

� GPUs can deliver high performance
� Even for double precision computations

� To obtain good performance:
� Alternate algorithms are often needed

� Restructuring of data-structures is crucial

� Efficient use of memory hierarchy is essential

� Getting it right on the GPU is easy …
� … getting good performance is not so much!

37

Thank You!

