A Tile-based Parallel Viterbi Algorithm for Biological Sequence Alignment on GPU with CUDA Zhihui Du¹, Zhaoming Yin², David A. Bader³

Department of Computer Science, Tsinghua University.
School of Software and Microelectronics, Peking University.
School of Computing, Georgia Institute of Technology

The Importance of Accelerating Viterbi Algorithm

•In the test of SATCHMO, Viterbi algorithm occupy anout 80% compution time

Dynamic Programming Matrix

					H+			H-			H-		
	-∞	-∞	-∞	-∞	-1.0	-∞	-∞	-2.0	-∞	-∞	-3.0	-∞	
	N/A	N/A	N/A	N/A	Л	N/A	N/A	DE	N/A	N/A	DE	N/A	
H-	-∞	-∞	-1.3	-0.8	-2.1	-1.8	-1.85	-1.4	-2.6	Em -2.4	it Prok -2.2	oability -3,8	
							Transition Probabili						
	N/A	N/A	Л	Л	IN	DE Foi	DE ward	MA Variat	DE ble	DE	DE	DE	
H-	-∞	-∞	-2.6	-2.6	-3.9	-1.8	-1.45	-2.6	-2.0	2.258	5- <u>12</u> .kpsg(=	0.5 <u>3)</u> - lo -2.25	g(0.8
	N/A	N/A	IN	IN	IN	MA	MI	IN	DE -	-1.4 MA -2.6	+ log((MA = 6 + log((=).1) + lo -27).3) + lo -3.4	g(0.5) g(0.5)

Trace Back

Related Work

- W. Liu, B. Schmidt, G. Voss, W. Muller Wittig. "Streaming Algorithms for Biological Sequence Alignment on GPUs" IEEE TPDS, Vol. 18, No. 9. (2007), pp. 1270-1281.
- Y. Munekawa, F. Ino, and K. Hagihara. Design and Implementation of the Smith-Waterman Algorithm on the CUDA-Compatible GPU. 8th IEEE International Conference on BioInformatics and BioEngineering, pages 1 C6, Oct .2008

Related Work

- S.A. Manavski, G. Valle. CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment. BMC Bioinformatics. 2008 Mar 26;9 Suppl 2:S10
- R. Horn, M. Houston, P. Hanrahan. ClawHMMer: A streaming HMMer –search implementation. Proc. Supercomputing (2005).

Wave-front Algorithm

wave-front algorithm:

The computing procedure is similar to a frontier of a wave to fill a matrix, where each block's value in the matrix is calculated based on the values of the previously-calculated blocks.

If the Sequence Length is Too Long!

Streaming Algorithm: Transfering data between Host and Device.

The Tile Based Algorithm

30:3059-3066 2002.

ΑΑΑΑΤΤΤΤΤΟΤΑΟΑΑΑΟΑΑΤΑΑΑΑΑΑΑ Step1: ΑΑΤΤΤΤΟΤΑCΑΑΑΑΑCΑΑΤΑΑΑ Utilizing Homological Segments to divide long sequence **Find Homological Segments** AAAATTTT CTAC AAA CTAC AAAAA CAAT AAA AATTTT See: M. Katoh and M. Kuma. "MAFFT: Align independently a novel method for rapid multiple sequence alignment based on fast AAAATTTT CTAC A - - AA CAAT AAAAAAA Fourier transform". AA - - TTTT CTAC AAAAA CAAT A - - - - AA In Nucleic Acids Res.

The Tile Based Algorithm

Find homological segment pairs

Divide sequence(shaded area)

Partition of Different Kind of

Computation

Partition of dependent and independent computations

Results

Intel Core 2 NVIDIA GeForce 9800

Seq-Length		Execution Time (Second)/Speedup									
		serial	Simple W	ave-front	Streaming		Tile-based				
	DW	0.73	0.37	1.97	0.38	1.92	0.28	2.61			
100	RW	0.017	0.007	2.42	0.02	0.85	0.006	2.83			
	DL	0.063	0.008	7.87	0.023	2.74	0.007	9			
	RL	0.027	0.007	3.86	0.023	1.17	0.007	3.86			
	DW	2.34	0.39	6	0.44	5.32	0.39	6			
200	RW	0.05	0.03	1.67	0.061	0.82	0.028	1.79			
	DL	0.324	0.035	9.26	0.065	4.98	0.029	11.17			
	RL	0.142	0.035	4.06	0.065	2.18	0.029	4.9			
	DW	5.89	0.42	14.02	0.46	12.8	0.43	13.7			
200	RW	0.12	0.068	1.76	0.1	1.2	0.055	2.18			
300	DL	0.647	0.07	9.26	0.112	5.78	0.054	11.98			
	RL	0.283	0.068	4.16	0.116	2.44	0.054	5.24			
	DW	9.93	0.50	19.86	0.52	19.1	0.45	22.07			
400	RW	0.21	0.13	1.61	0.159	1.32	0.098	2.14			
	DL	1.112	0.12	9.27	0.2	5.56	0.099	11.23			
	RL	0.485	0.122	3.98	0.174	2.79	0.097	5			
	DW	15.9	0.54	29.44	0.54	29.44	0.52	30.58			
500	RW	0.34	0.19	1.78	0.239	1.42	0.174	1.95			
500	DL	1.783	0.198	9	0.262	6.8	0.155	11.5			
	RL	0.783	0.191	4.10	0.251	3.12	0.153	5.12			
	DW	62.1	0.99	62.73	1.10	56.45	0.86	72.21			
1000	RW	1.34	0.64	2.09	0.686	1.95	0.554	2.42			
1000	DL	6.98	0.64	10.91	0.725	9.63	0.53	13.17			
	RL	3.07	0.635	4.83	0.62	4.952	0.512	6.0			

Test of Streaming Algorithm

Test of Tile based Algorithm

Test of Long Sequences

Under Linux System

Future work

- 1: Experiments on multiple GPUs
- 2: New Architectures such as FERMI

