

Meta-Scheduling in Advance using Red-Black Trees in Heterogeneous Grids

Luis Tomás, Agustín Caminero, Carmen Carrión, Blanca Caminero

Dept. of Computing Systems The University of Castilla La Mancha Albacete, Spain

- Introduction
- Meta-scheduling In Advance
- Implementation
- Experiments and Results
- Conclusions

- Introduction
- Meta-scheduling In Advance
- Implementation
- Experiments and Results
- Conclusions

INTRODUCTION

Introduction

• Meta-Scheduling In Advance

- Implementation
- •Experiments and Results
- Conclusions

HPGC 2010

• The Grid infrastructure must provide the needed services for automatic resource brokerage.

- This infrastructure is named "meta-scheduler".
- Brokering problem:
 - Heterogeneous and distributed nature of the Grid.
 - Differing characteristics of different applications.
- How to solve this problem:
 - To ensure that a specific resource is available when the job requires it.
 - To reserve or schedule the use of resources in-advance.

INTRODUCTION

Introduction

- Meta-Scheduling In Advance
- Implementation
- Experiments and Results
- Conclusions

HPGC 2010

Advanced reservation:

- Restrictive or limited delegation of particular resource capacity.
- Provide some QoS by ensuring that a certain job ends on time.
- Increase the predictability of a Grid system.
- Disadvantages:
 - Incorporating such mechanisms into current Grid environments is a challenging task due to the resulting resource fragmentation.
 - Reservations may not be always feasible:
 - Not all the LRMS permit them.
 - There are other types of resources which lack a global management entity (bandwidth).

INTRODUCTION

Introduction

- Meta-Scheduling In Advance
- Implementation
- Experiments and Results
- Conclusions

HPGC 2010

 This is the reason to perform meta-scheduling in advance rather the 	an
advanced reservations to provide QoS in Grids.	

- **Deadline** is a measure of the QoS required by the user.
- Meta-scheduling in advance:
 - First step of an advance reservation.
 - It selects the resource and the time period to execute the job.
 - It does not make any physical reservation.

•The main challenge:

 Without knowing the exact status of the resources at future points in time it is difficult to decide whether a job can be executed fulfilling its QoS.

- Introduction
- Meta-scheduling In Advance
- Implementation
- Experiments and Results
- Conclusions

META-SCHEDULING IN ADVANCE

Introduction

• Meta-Scheduling In Advance

- Implementation
- •Experiments and Results
- Conclusions

HPGC 2010

• Problems to offer QoS in Grids environments using advanced reservations:

- They are **not always possible**.
- Cause severe **performance degradation** because algorithms are complex.
- They lack flexibility as they do not permit graceful degradation in application performance.
- Required features:
 - It must take into account resource heterogeneity.
 - It needs to adapt to dynamic changes in resource availability and user demand without hurting system and user performance.
 - Algorithms need to be efficient.
 - Employing techniques from **computational geometry** to develop an efficient heterogeneity-aware scheduling algorithm.
 - A good **running time prediction** of tasks.

META-SCHEDULING IN ADVANCE

Introduction

• Meta-Scheduling In Advance

- Implementation
- •Experiments and Results
- Conclusions

- An **scheduling in advance process** is done following these steps:
 - First, a "**user request**" specifying the job QoS requirements is received.
 - The meta-scheduler executes a "**gap search**" **algorithm** to obtain the resource and the time interval to execute the job.
 - It keeps track of the meta-scheduling decisions already made in order to make future decisions.
 - It has into account the status reported by the resources.
 - It has into account the QoS requirements of the job.
 - If it is not possible to fulfill the QoS requirements using the resources of its own domain, the communication with other meta-schedulers allocated in other domains starts.
 - If it is still not possible to meet the QoS requirements, a negotiation process with the user is started to define new QoS requirements.

- Introduction
- Meta-scheduling In Advance
- Implementation
- Experiments and Results
- Conclusions

HPGC 2010

Scheduling In Advance

Introduction

• Meta-

• Implementation

- Experiments and Results
- Conclusions

SA-layer

 Intermediate layer between users and GridWay.

IMPLEMENTATION

• SA-layer uses functions provided by GridWay.

 Resource usages are divided into time slots of 1 minute.

Introduction

- Meta-Scheduling In Advance
- Implementation
- Experiments and Results
- Conclusions

HPGC 2010

DATA STRUCTURE:

- Reduces the complexity of algorithms.
- It has influence on how scalable the algorithm is.
- Red black trees.
 - **Efficiently** identify feasible idle periods.

Introduction

- Meta-Scheduling In Advance
- Implementation
- Experiments and Results
- Conclusions

GAP MANAGEMENT:

- The way of allocating the jobs influences in how many jobs can be scheduled because of generated fragmentation.
- Implementation:
 - A First Fit policy.
 - Techniques from computational geometry.

Introduction

• Meta-Scheduling In Advance

- •Implementation
- Experiments and Results
- Conclusions

PREDICTOR:

- Extension of algorithm proposed by Castillo et al.:
 - To take into account the heterogeneity of Grid resources.
 - To not need an "a priori" knowlegde of the jobs duration into resources.

• The monitoring information collected is kept in databases and reused for the next resource allocation decisions.

- Introduction
- Meta-Scheduling In Advance
- •Implementation
- Experiments and Results
- Conclusions

- Two ways of calculating estimations for job completion times:
 - Based on a linear function (Castillo et al. proposal).
 - Based on executions data log.
- The linear function:
 - Does not take into account the different resource performance.
 - Only the input parameters of the job and the knowledge about its behaviour.
 - All the resources are treated as homogeneous.
- The data logs:
 - The resource heterogeneity is taken into account.
 - The mean of the completion times from previous executions for each type of application is calculated.

Introduction

- •Meta-Scheduling In Advance
- •Implementation
- •Experiments and Results
- Conclusions

- Two applications are considered to belong to the same type when they have the same input and output parameters.
- This mean is calculated for each host separately, taking into account the host where previous executions were performed.
- Predictions on the completion time are calculated for each type of application for each host in the system.
 - These predictions are only calculated when a suitable gap has been found in the host.

- Introduction
- Meta-scheduling In Advance
- Implementation
- Experiments and Results
- Conclusions

HPGC 2010

18

Introduction

- •Meta-Scheduling In Advance
- Implementation

•Experiments and Results

Conclusions

HPGC 2010

Workload:

- 3Node from the GRASP benchmarks.
- Parameterizable options:

- To make it more computing intensive (compute_scale parameter)
- To make it more network demanding (output_scale parameter).
- Important parameters of the workload:

Introduction

• Meta-Scheduling In Advance

Implementation

•Experiments and Results

Conclusions

	2				
- 2	÷.				
			_		
HI	PG	iC	2	01	0

PERFORMANCE EVALUATION

- Scheduled job rate
 - Fraction of accepted jobs.
- QoS not fulfilled
 - Number of jobs rejected.
 - Number of jobs that do not meet their deadlines.
- Overlap
 - Minutes that a job execution is extended over the calculated estimation.

• Waste

 Minutes not used to execute any job because the meta-scheduler thought that jobs would need more time to complete their executions.

Introduction

- Meta-Scheduling In Advance
- Implementation

•Experiments and Results

Conclusions

Data Log estimations exhibits better performance

- Introduction
- Meta-scheduling In Advance
- Implementation
- Experiments and Results
- Conclusions

CONCLUSIONS

Introduction

• Meta-Scheduling In Advance

- Implementation
- •Experiments and Results

HPGC 2010

• Conclusions

•	Providing QoS in Grids by means of advanced reservations is not always
fe	easible.

- We proposed scheduling in advance as a possible solution to provide QoS.
- This requires to tackle many challenges.
- It is highlighted the importance of:
 - Using scheduling in advance to meet the QoS requested by users.
 - Taking into account the heterogeneity of Grid resources in the job completion time estimations.
- Meta-scheduling in advance and advanced reservation in Grid environments are open fields that still need research.
- Our work is being carried out in a real Grid environment.

CONCLUSIONS

Introduction

- •Meta-Scheduling In Advance
- Implementation
- •Experiments and Results

HPGC 2010

• Conclusions

• Future work:

- To differentiate the network transfer time from execution time of the jobs.
- Job rescheduling:
 - It is needed whenever a resource leaves the Grid.
 - It can improve the job scheduled rate by reschedule job already scheduled in order to accept other jobs that have a more restrictive QoS requirements.

Meta-Scheduling in Advance using Red-Black Trees in Heterogeneous Grids

Luis Tomás, Agustín Caminero, Carmen Carrión, Blanca Caminero

Dept. of Computing Systems The University of Castilla La Mancha Albacete, Spain

