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@ Direct communications
between peers;
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@ Applications coming from
any sciences (e-Science
applications)
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In search of distributed architecture

@ An approach based on structured overlay network to discover
(on the fly) the next node executing the next task

@ Decentralizes the execution of a distributed application with
precedences between tasks
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DataRequest and YourData
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@ M1 assigns T4 to M4 that she had found
@ M3 ends T3 but does not seek a machine for T6
@ M2 seeks M5 and M6 and assigns T5 and T6
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@ M initializes the RDV and the FTC of the application
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@ M initializes the RDV and the FTC of the application

@ M assigns tasks T1, T2 to M1 and M2

@ PAST creates k (k = 2) replicas RDV1, RDV2 for RDV
and FTC1, FTC2 for FTC
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PastryGrid Validation

The FT part

@ Intensive experiments have been conducted (each machine has
a probability P to fail for X seconds): P = 20%,40%, 80% ;
100 applications (2 to 128 // tasks) ; on 200 nodes

@ Main observations:

o In all cases, PastryGrid terminates;

o The recovery time depends on the node type;

e The delay varies from 4:53s to 7:16:41s. .. but it works! The
number of delayed applications varies from 44 to 98.

Prob. Execution #Failed #Delayed #I'TC | # RDV

in % time (s) nodes applications nodes nodes
Scenario 1 20 2h, 13mn and 2secs 66 44 2 2
Scenario 2 50 3h, 22mn and 27secs 198 58 B 7
Scenario 3 80 9h, 24mn and 4Ysecs 583 98 12 14
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Conclusion

@ PastryGrid: Fault-tolerant decentralized system for running
distributed applications with precedence between tasks

@ Creation of a dynamic execution environment for each
application

@ Decentralized collaboration between machines for application
tasks management




Conclusion

Conclusion and Perspectives

@ DG has proved to be relevant for resource sharing =
transpose this success story to the Cloud and Paa$S universes
= offer a technical alternate to Google, Salesforce, Amazon
big farm of servers




Conclusion

Conclusion and Perspectives

@ DG has proved to be relevant for resource sharing =
transpose this success story to the Cloud and Paa$S universes
= offer a technical alternate to Google, Salesforce, Amazon
big farm of servers

@ PastryGrid is based on emerging open source Cloud solution.
From an economic point of view: if it is less expensive to host
services locally and if it support a wide range of applications
— more potential partners, then small/medium size
companies will adopt PastryGrid;




Conclusion

Conclusion and Perspectives

@ DG has proved to be relevant for resource sharing =
transpose this success story to the Cloud and Paa$S universes
= offer a technical alternate to Google, Salesforce, Amazon
big farm of servers

@ PastryGrid is based on emerging open source Cloud solution.
From an economic point of view: if it is less expensive to host
services locally and if it support a wide range of applications
— more potential partners, then small/medium size
companies will adopt PastryGrid;




Conclusion

Fault-Tolerance for PastryGrid Middleware

Christophe Cérin!, Heithem Abbes!?, Mohamed Jemni?, Yazid
Missaoui?

LLIPN, Université de Paris XIll, CNRS UMR 7030, France
2UTIC, ESSTT, Université de Tunis, Tunisia

HPGC'10 - IPDPS



	Introduction
	PastryGrid
	Fault Tolerance in PastryGrid
	Conclusion

