
Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

Fault-Tolerance for PastryGrid Middleware

Christophe Cérin1, Heithem Abbes1,2, Mohamed Jemni2, Yazid
Missaoui2

1LIPN, Université de Paris XIII, CNRS UMR 7030, France
2UTIC, ESSTT, Université de Tunis, Tunisia

HPGC’10 - IPDPS

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

Outlines

1 Introduction

2 PastryGrid

3 Fault Tolerance in PastryGrid

4 Conclusion

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

Desktop Grid Architectures

Desktop Grid

! "#$%&!'()*+,-!-)(./ 0

!"#$%&'()&*#+,"%(+%-#(

!"

!"

!#$#%&'&$(

")*&+',#--)*.#'*/+,
!#$#%(0,1$&(2)'(0

3&(2)'(

"//$4*+#'/$1
3&(/2$.&,5*(.0

!"#$%&'()"*+&%,-($",$.%" /0#0'1$-(2."+&%,-($",$.%"3

45"%+3+6*7(#+(#$"%8&,"

9(%":&'';<6=

6>>'(,&$(0#

?,-"*.'"%
=&5@+3+A&$&+3+<"$+

B?+3+?&#*C0D

E%0$0,0'5

Key Points

Federation of thousand of
nodes;

Internet as the
communication layer: no
trust!

Volatility; local IP; Firewall

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

Desktop Grid Architectures

Desktop Grid

! "#$%&!'()*+,-!-)(./ &

!"#$%&'("%')*#+,-"#-.*"

!"#$%&'()"*+&%,-($",$.%"
/01'($+$&0203*&$&+45#$6
7#$"%+#8*"+,8409

:8#8';$-(<."+&%,-($",$.%"=

>0"%+=+?*4(#+(#$"%@&,"

?11'(,&$(8#

A,-"*.'"%
B&02+=+C&$&+=+D"$+

EA+=+A&#*F8G

H%8$8,8'0!"
!#$#%&'&$(

")*&+',
#--)*.#'*/+,
!#$#%(0,1
$&(2)'(0

3&(2)'(

"//$4*+#'/$1
5.6&42)&$,78#(9(:

I(%"J&''3D?B

;#'#,<#+#=&$
5.6&42)&$,78#(9(:

Future Generation (in 2006)

Distributed Architecture

Architecture with
modularity: every
component is
“configurable”: scheduler,
storage, transport protocole

Direct communications
between peers;

Security;

Applications coming from
any sciences (e-Science
applications)

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

In search of distributed architecture

PastryGrid

An approach based on structured overlay network to discover
(on the fly) the next node executing the next task

Decentralizes the execution of a distributed application with
precedences between tasks

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

In search of distributed architecture

PastryGrid

An approach based on structured overlay network to discover
(on the fly) the next node executing the next task

Decentralizes the execution of a distributed application with
precedences between tasks

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

PastryGrid’s overview

Main objectives

Fully distributed execution of task graph;

Distributed resource management;

Distributed coordination;

Dynamically creation of an execution environment;

No central element;

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

PastryGrid’s overview

Main objectives

Fully distributed execution of task graph;

Distributed resource management;

Distributed coordination;

Dynamically creation of an execution environment;

No central element;

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

PastryGrid’s overview

Main objectives

Fully distributed execution of task graph;

Distributed resource management;

Distributed coordination;

Dynamically creation of an execution environment;

No central element;

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

PastryGrid’s overview

Main objectives

Fully distributed execution of task graph;

Distributed resource management;

Distributed coordination;

Dynamically creation of an execution environment;

No central element;

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

PastryGrid’s overview

Main objectives

Fully distributed execution of task graph;

Distributed resource management;

Distributed coordination;

Dynamically creation of an execution environment;

No central element;

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

PastryGrid’s overview

Main objectives

Fully distributed execution of task graph;

Distributed resource management;

Distributed coordination;

Dynamically creation of an execution environment;

No central element;

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

PastryGrid’s Terminology

Task terminology

Friend tasks: T2, T3 share the
same successor (T6)

Shared tasks T6: has n > 1
ancestors (T2, T3)

Isolated tasks T4, T5: have a single
ancestor

Example

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

PastryGrid’s Terminology

Task terminology

Friend tasks: T2, T3 share the
same successor (T6)

Shared tasks T6: has n > 1
ancestors (T2, T3)

Isolated tasks T4, T5: have a single
ancestor

Example

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

PastryGrid’s Terminology

Task terminology

Friend tasks: T2, T3 share the
same successor (T6)

Shared tasks T6: has n > 1
ancestors (T2, T3)

Isolated tasks T4, T5: have a single
ancestor

Example

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

PastryGrid’s Terminology

Task terminology

Friend tasks: T2, T3 share the
same successor (T6)

Shared tasks T6: has n > 1
ancestors (T2, T3)

Isolated tasks T4, T5: have a single
ancestor

Example

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

PastryGrid components

Addressing scheme to identify applications and users (based
on haching application name + submission date + user name
— DHT (Pastry))

Protocol of resource discovering; No dedicated nodes for the
search of the next node to use → on the fly! Optimization:
the machine that terminates the last starts the search.

Rendez-vous concept (RDV); Objectives: localisation of a
node without IP; task coordination; data recovery;

coordination protocol between machines participating in the
application.

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

PastryGrid components

Addressing scheme to identify applications and users (based
on haching application name + submission date + user name
— DHT (Pastry))

Protocol of resource discovering; No dedicated nodes for the
search of the next node to use → on the fly! Optimization:
the machine that terminates the last starts the search.

Rendez-vous concept (RDV); Objectives: localisation of a
node without IP; task coordination; data recovery;

coordination protocol between machines participating in the
application.

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

PastryGrid components

Addressing scheme to identify applications and users (based
on haching application name + submission date + user name
— DHT (Pastry))

Protocol of resource discovering; No dedicated nodes for the
search of the next node to use → on the fly! Optimization:
the machine that terminates the last starts the search.

Rendez-vous concept (RDV); Objectives: localisation of a
node without IP; task coordination; data recovery;

coordination protocol between machines participating in the
application.

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

PastryGrid components

Addressing scheme to identify applications and users (based
on haching application name + submission date + user name
— DHT (Pastry))

Protocol of resource discovering; No dedicated nodes for the
search of the next node to use → on the fly! Optimization:
the machine that terminates the last starts the search.

Rendez-vous concept (RDV); Objectives: localisation of a
node without IP; task coordination; data recovery;

coordination protocol between machines participating in the
application.

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

PastryGrid components

Addressing scheme to identify applications and users (based
on haching application name + submission date + user name
— DHT (Pastry))

Protocol of resource discovering; No dedicated nodes for the
search of the next node to use → on the fly! Optimization:
the machine that terminates the last starts the search.

Rendez-vous concept (RDV); Objectives: localisation of a
node without IP; task coordination; data recovery;

coordination protocol between machines participating in the
application.

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

RDV Concept

Coordinator

Known at the beginning;

Central element on a
decicated place;

Failure: the system crashes;

Centralized resource
management;

Management of all
applications (overload)

RDV

Unknown;

Variable;

Failure: may still run;

Distributed data
management;

RDV for each application
(limited overload)

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

RDV Concept

Coordinator

Known at the beginning;

Central element on a
decicated place;

Failure: the system crashes;

Centralized resource
management;

Management of all
applications (overload)

RDV

Unknown;

Variable;

Failure: may still run;

Distributed data
management;

RDV for each application
(limited overload)

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

RDV Concept

Coordinator

Known at the beginning;

Central element on a
decicated place;

Failure: the system crashes;

Centralized resource
management;

Management of all
applications (overload)

RDV

Unknown;

Variable;

Failure: may still run;

Distributed data
management;

RDV for each application
(limited overload)

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

RDV Concept

Coordinator

Known at the beginning;

Central element on a
decicated place;

Failure: the system crashes;

Centralized resource
management;

Management of all
applications (overload)

RDV

Unknown;

Variable;

Failure: may still run;

Distributed data
management;

RDV for each application
(limited overload)

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

RDV Concept

Coordinator

Known at the beginning;

Central element on a
decicated place;

Failure: the system crashes;

Centralized resource
management;

Management of all
applications (overload)

RDV

Unknown;

Variable;

Failure: may still run;

Distributed data
management;

RDV for each application
(limited overload)

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

RDV Concept

Coordinator

Known at the beginning;

Central element on a
decicated place;

Failure: the system crashes;

Centralized resource
management;

Management of all
applications (overload)

RDV

Unknown;

Variable;

Failure: may still run;

Distributed data
management;

RDV for each application
(limited overload)

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

RDV Concept

Coordinator

Known at the beginning;

Central element on a
decicated place;

Failure: the system crashes;

Centralized resource
management;

Management of all
applications (overload)

RDV

Unknown;

Variable;

Failure: may still run;

Distributed data
management;

RDV for each application
(limited overload)

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

RDV Concept

Coordinator

Known at the beginning;

Central element on a
decicated place;

Failure: the system crashes;

Centralized resource
management;

Management of all
applications (overload)

RDV

Unknown;

Variable;

Failure: may still run;

Distributed data
management;

RDV for each application
(limited overload)

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

RDV Concept

Coordinator

Known at the beginning;

Central element on a
decicated place;

Failure: the system crashes;

Centralized resource
management;

Management of all
applications (overload)

RDV

Unknown;

Variable;

Failure: may still run;

Distributed data
management;

RDV for each application
(limited overload)

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

RDV Concept

Coordinator

Known at the beginning;

Central element on a
decicated place;

Failure: the system crashes;

Centralized resource
management;

Management of all
applications (overload)

RDV

Unknown;

Variable;

Failure: may still run;

Distributed data
management;

RDV for each application
(limited overload)

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

RDV Concept

Coordinator

Known at the beginning;

Central element on a
decicated place;

Failure: the system crashes;

Centralized resource
management;

Management of all
applications (overload)

RDV

Unknown;

Variable;

Failure: may still run;

Distributed data
management;

RDV for each application
(limited overload)

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

How PastryGrid works

Hash (Application Name + User Name + Submission Date):
Unique identifier ApplicationId

Initialization of RDV: The machine which is closest numerically
to ApplicationId

Search for free machine and assignment of tasks T1, T2 and T3

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

How PastryGrid works

Hash (Application Name + User Name + Submission Date):
Unique identifier ApplicationId

Initialization of RDV: The machine which is closest numerically
to ApplicationId

Search for free machine and assignment of tasks T1, T2 and T3

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

How PastryGrid works

Hash (Application Name + User Name + Submission Date):
Unique identifier ApplicationId

Initialization of RDV: The machine which is closest numerically
to ApplicationId

Search for free machine and assignment of tasks T1, T2 and T3

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

How PastryGrid works

Hash (Application Name + User Name + Submission Date):
Unique identifier ApplicationId

Initialization of RDV: The machine which is closest numerically
to ApplicationId

Search for free machine and assignment of tasks T1, T2 and T3

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

How PastryGrid works

Hash (Application Name + User Name + Submission Date):
Unique identifier ApplicationId

Initialization of RDV: The machine which is closest numerically
to ApplicationId

Search for free machine and assignment of tasks T1, T2 and T3

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

How PastryGrid works

Request and Data Recovery by M1, M2 and M3:
DataRequest and YourData

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

How PastryGrid works

M1 assigns T4 to M4 that she had found

M3 ends T3 but does not seek a machine for T6

M2 seeks M5 and M6 and assigns T5 and T6

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

How PastryGrid works

M1 assigns T4 to M4 that she had found

M3 ends T3 but does not seek a machine for T6

M2 seeks M5 and M6 and assigns T5 and T6

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

How PastryGrid works

M1 assigns T4 to M4 that she had found

M3 ends T3 but does not seek a machine for T6

M2 seeks M5 and M6 and assigns T5 and T6

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

How PastryGrid works

M1 assigns T4 to M4 that she had found

M3 ends T3 but does not seek a machine for T6

M2 seeks M5 and M6 and assigns T5 and T6

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

How PastryGrid works

M1 assigns T4 to M4 that she had found

M3 ends T3 but does not seek a machine for T6

M2 seeks M5 and M6 and assigns T5 and T6

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

How PastryGrid works

M1 assigns T4 to M4 that she had found

M3 ends T3 but does not seek a machine for T6

M2 seeks M5 and M6 and assigns T5 and T6

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

How PastryGrid works

M1 assigns T4 to M4 that she had found

M3 ends T3 but does not seek a machine for T6

M2 seeks M5 and M6 and assigns T5 and T6

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

How PastryGrid works

M1 assigns T4 to M4 that she had found

M3 ends T3 but does not seek a machine for T6

M2 seeks M5 and M6 and assigns T5 and T6

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

How PastryGrid works

M1 assigns T4 to M4 that she had found

M3 ends T3 but does not seek a machine for T6

M2 seeks M5 and M6 and assigns T5 and T6

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

Fault Tolerance in PastryGrid

Passive replication based on Past (maintaining of k copies of
the node states) ; update copies when a modification occurs
on a source node; automatically creation of a copy (to
maintain k)

If we adopt such approach ⇒ node explosion;

A new component has been added: FTC (Fault Tolerant
Component) node

Supervises tasks that are running;
A FTC component for each application; It contacts the RDV
to decide the tasks to supervise;
k copies of the FTC and k copies of the RDV per application.
In fact you have 3 types of nodes: computing nodes, FTC
nodes and RDV nodes to manage;

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

Fault Tolerance in PastryGrid

Passive replication based on Past (maintaining of k copies of
the node states) ; update copies when a modification occurs
on a source node; automatically creation of a copy (to
maintain k)

If we adopt such approach ⇒ node explosion;

A new component has been added: FTC (Fault Tolerant
Component) node

Supervises tasks that are running;
A FTC component for each application; It contacts the RDV
to decide the tasks to supervise;
k copies of the FTC and k copies of the RDV per application.
In fact you have 3 types of nodes: computing nodes, FTC
nodes and RDV nodes to manage;

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

Fault Tolerance in PastryGrid

Passive replication based on Past (maintaining of k copies of
the node states) ; update copies when a modification occurs
on a source node; automatically creation of a copy (to
maintain k)

If we adopt such approach ⇒ node explosion;

A new component has been added: FTC (Fault Tolerant
Component) node

Supervises tasks that are running;

A FTC component for each application; It contacts the RDV
to decide the tasks to supervise;
k copies of the FTC and k copies of the RDV per application.
In fact you have 3 types of nodes: computing nodes, FTC
nodes and RDV nodes to manage;

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

Fault Tolerance in PastryGrid

Passive replication based on Past (maintaining of k copies of
the node states) ; update copies when a modification occurs
on a source node; automatically creation of a copy (to
maintain k)

If we adopt such approach ⇒ node explosion;

A new component has been added: FTC (Fault Tolerant
Component) node

Supervises tasks that are running;
A FTC component for each application; It contacts the RDV
to decide the tasks to supervise;

k copies of the FTC and k copies of the RDV per application.
In fact you have 3 types of nodes: computing nodes, FTC
nodes and RDV nodes to manage;

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

Fault Tolerance in PastryGrid

Passive replication based on Past (maintaining of k copies of
the node states) ; update copies when a modification occurs
on a source node; automatically creation of a copy (to
maintain k)

If we adopt such approach ⇒ node explosion;

A new component has been added: FTC (Fault Tolerant
Component) node

Supervises tasks that are running;
A FTC component for each application; It contacts the RDV
to decide the tasks to supervise;
k copies of the FTC and k copies of the RDV per application.
In fact you have 3 types of nodes: computing nodes, FTC
nodes and RDV nodes to manage;

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

Fault Tolerance in PastryGrid

Passive replication based on Past (maintaining of k copies of
the node states) ; update copies when a modification occurs
on a source node; automatically creation of a copy (to
maintain k)

If we adopt such approach ⇒ node explosion;

A new component has been added: FTC (Fault Tolerant
Component) node

Supervises tasks that are running;
A FTC component for each application; It contacts the RDV
to decide the tasks to supervise;
k copies of the FTC and k copies of the RDV per application.
In fact you have 3 types of nodes: computing nodes, FTC
nodes and RDV nodes to manage;

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

Fault Tolerance in PastryGrid

M initializes the RDV and the FTC of the application

M assigns tasks T1, T2 to M1 and M2

PAST creates k (k = 2) replicas RDV1, RDV2 for RDV
and FTC1, FTC2 for FTC

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

Fault Tolerance in PastryGrid

M initializes the RDV and the FTC of the application

M assigns tasks T1, T2 to M1 and M2

PAST creates k (k = 2) replicas RDV1, RDV2 for RDV
and FTC1, FTC2 for FTC

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

Fault Tolerance in PastryGrid

M initializes the RDV and the FTC of the application

M assigns tasks T1, T2 to M1 and M2

PAST creates k (k = 2) replicas RDV1, RDV2 for RDV
and FTC1, FTC2 for FTC

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

Fault Tolerance in PastryGrid

M initializes the RDV and the FTC of the application

M assigns tasks T1, T2 to M1 and M2

PAST creates k (k = 2) replicas RDV1, RDV2 for RDV
and FTC1, FTC2 for FTC

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

Fault Tolerance in PastryGrid

M1 and M2 recover from RDV, the data for T1 and T2

The RDV informed the FTC of running tasks (T1 and T2)

The FTC supervises the execution of tasks T1 and T2
on M1 and M2

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

Fault Tolerance in PastryGrid

M1 and M2 recover from RDV, the data for T1 and T2

The RDV informed the FTC of running tasks (T1 and T2)

The FTC supervises the execution of tasks T1 and T2
on M1 and M2

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

Fault Tolerance in PastryGrid

M1 and M2 recover from RDV, the data for T1 and T2

The RDV informed the FTC of running tasks (T1 and T2)

The FTC supervises the execution of tasks T1 and T2
on M1 and M2

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

Fault Tolerance in PastryGrid

M1 and M2 recover from RDV, the data for T1 and T2

The RDV informed the FTC of running tasks (T1 and T2)

The FTC supervises the execution of tasks T1 and T2
on M1 and M2

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

Fault Tolerance in PastryGrid

M1 and M2 recover from RDV, the data for T1 and T2

The RDV informed the FTC of running tasks (T1 and T2)

The FTC supervises the execution of tasks T1 and T2
on M1 and M2

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

PastryGrid Validation

The FT part

Intensive experiments have been conducted (each machine has
a probability P to fail for X seconds): P = 20%, 40%, 80% ;
100 applications (2 to 128 // tasks) ; on 200 nodes

Main observations:

In all cases, PastryGrid terminates;
The recovery time depends on the node type;
The delay varies from 4:53s to 7:16:41s. . . but it works! The
number of delayed applications varies from 44 to 98.

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

PastryGrid Validation

The FT part

Intensive experiments have been conducted (each machine has
a probability P to fail for X seconds): P = 20%, 40%, 80% ;
100 applications (2 to 128 // tasks) ; on 200 nodes

Main observations:

In all cases, PastryGrid terminates;
The recovery time depends on the node type;
The delay varies from 4:53s to 7:16:41s. . . but it works! The
number of delayed applications varies from 44 to 98.

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

Conclusion and Perspectives

Conclusion

PastryGrid: Fault-tolerant decentralized system for running
distributed applications with precedence between tasks

Creation of a dynamic execution environment for each
application

Decentralized collaboration between machines for application
tasks management

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

Conclusion and Perspectives

Conclusion

PastryGrid: Fault-tolerant decentralized system for running
distributed applications with precedence between tasks

Creation of a dynamic execution environment for each
application

Decentralized collaboration between machines for application
tasks management

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

Conclusion and Perspectives

Conclusion

PastryGrid: Fault-tolerant decentralized system for running
distributed applications with precedence between tasks

Creation of a dynamic execution environment for each
application

Decentralized collaboration between machines for application
tasks management

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

Conclusion and Perspectives

Perspectives

DG has proved to be relevant for resource sharing ⇒
transpose this success story to the Cloud and PaaS universes
⇒ offer a technical alternate to Google, Salesforce, Amazon
big farm of servers

PastryGrid is based on emerging open source Cloud solution.
From an economic point of view: if it is less expensive to host
services locally and if it support a wide range of applications
→ more potential partners, then small/medium size
companies will adopt PastryGrid;

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

Conclusion and Perspectives

Perspectives

DG has proved to be relevant for resource sharing ⇒
transpose this success story to the Cloud and PaaS universes
⇒ offer a technical alternate to Google, Salesforce, Amazon
big farm of servers

PastryGrid is based on emerging open source Cloud solution.
From an economic point of view: if it is less expensive to host
services locally and if it support a wide range of applications
→ more potential partners, then small/medium size
companies will adopt PastryGrid;

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

Conclusion and Perspectives

Perspectives

DG has proved to be relevant for resource sharing ⇒
transpose this success story to the Cloud and PaaS universes
⇒ offer a technical alternate to Google, Salesforce, Amazon
big farm of servers

PastryGrid is based on emerging open source Cloud solution.
From an economic point of view: if it is less expensive to host
services locally and if it support a wide range of applications
→ more potential partners, then small/medium size
companies will adopt PastryGrid;

Introduction PastryGrid Fault Tolerance in PastryGrid Conclusion

Fault-Tolerance for PastryGrid Middleware

Christophe Cérin1, Heithem Abbes1,2, Mohamed Jemni2, Yazid
Missaoui2

1LIPN, Université de Paris XIII, CNRS UMR 7030, France
2UTIC, ESSTT, Université de Tunis, Tunisia

HPGC’10 - IPDPS

	Introduction
	PastryGrid
	Fault Tolerance in PastryGrid
	Conclusion

