Fault-Tolerance for PastryGrid Middleware

Christophe Cérin!, Heithem Abbes!?, Mohamed Jemni?, Yazid
Missaoui?

LLIPN, Université de Paris XIll, CNRS UMR 7030, France
2UTIC, ESSTT, Université de Tunis, Tunisia

HPGC'10 - IPDPS

Outlines

© Introduction
© PastryGrid
© Fault Tolerance in PastryGrid

@ Conclusion

Introduction

Desktop Grid Architectures

Desktop Grid
I I First Gen Architecture

Centralized i +

Client application

Params. /results. Coordinator/
Resource Disc.

R [Task + Data + Net ||
~PLOS + Sandbox

FirewalINAT <

N7 workin groun 5

Key Points
@ Federation of thousand of
nodes;

@ Internet as the
communication layer: no
trust!

@ Volatility; local IP; Firewall

v

Introduction

Desktop Grid Architectures

Desktop Grid Future Genera n 20
P @ Distributed Architecture
Second Gen Architecture @ Architecture with

e modularity: every
Inter node coms) .
Sroacaion Bomer N component Is
‘;\&) % configurable”: scheduler,

storage, transport protocole
Scheduler (Tasks)

Firewall/NAGF working groun 7

@ Direct communications
between peers;

@ Security;

@ Applications coming from
any sciences (e-Science
applications)

Introduction

In search of distributed architecture

@ An approach based on structured overlay network to discover
(on the fly) the next node executing the next task

Introduction

In search of distributed architecture

@ An approach based on structured overlay network to discover
(on the fly) the next node executing the next task

@ Decentralizes the execution of a distributed application with
precedences between tasks

PastryGrid

PastryGrid’s overview

Main objectives

o Fully distributed execution of task graph;

PastryGrid

PastryGrid’s overview

Main objectives

o Fully distributed execution of task graph;

@ Distributed resource management;

PastryGrid

PastryGrid’s overview

Main objectives

o Fully distributed execution of task graph;

@ Distributed resource management;

@ Distributed coordination;

PastryGrid

PastryGrid’s overview

Main objectives

o Fully distributed execution of task graph;

@ Distributed resource management;
@ Distributed coordination;
°

Dynamically creation of an execution environment;

PastryGrid

PastryGrid’s overview

Main objectives

o Fully distributed execution of task graph;

Distributed resource management;
Distributed coordination;

Dynamically creation of an execution environment;

No central element;

PastryGrid

PastryGrid’s overview

Main objectives

o Fully distributed execution of task graph;

Distributed resource management;
Distributed coordination;

Dynamically creation of an execution environment;

No central element;

PastryGrid

PastryGrid’s Terminology

Task terminology

@ Friend tasks: Ty, T3 share the
same successor (Te)

PastryGrid

PastryGrid’s Terminology

Task terminology

@ Friend tasks: Ty, T3 share the
same successor (T¢)

@ Shared tasks Tg: has n > 1
ancestors (T, T3)

PastryGrid

PastryGrid’s Terminology

Task terminology

@ Friend tasks: Ty, T3 share the
same successor (T¢)

@ Shared tasks Tg: has n > 1
ancestors (T, T3)

° T4, Ts: have a single
ancestor

v

PastryGrid

PastryGrid’s Terminology

@ Friend tasks: Ty, T3 share the

same successor (Te) o o

@ Shared tasks Tg: has n > 1

ancestors (T, T3) e e

° T4, Ts: have a single

ancestor) G

PastryGrid

PastryGrid components

@ Addressing scheme to identify applications and users (based
on haching application name + submission date + user name
— DHT (Pastry))

PastryGrid

PastryGrid components

@ Addressing scheme to identify applications and users (based
on haching application name + submission date + user name
— DHT (Pastry))

@ Protocol of resource discovering; No dedicated nodes for the
search of the next node to use — on the fly! Optimization:
the machine that terminates the last starts the search.

PastryGrid

PastryGrid components

@ Addressing scheme to identify applications and users (based

on haching application name + submission date + user name
— DHT (Pastry))

@ Protocol of resource discovering; No dedicated nodes for the
search of the next node to use — on the fly! Optimization:
the machine that terminates the last starts the search.

@ Rendez-vous concept (RDV); Objectives: localisation of a
node without IP; task coordination; data recovery;

PastryGrid

PastryGrid components

@ Addressing scheme to identify applications and users (based

on haching application name + submission date + user name
— DHT (Pastry))

@ Protocol of resource discovering; No dedicated nodes for the
search of the next node to use — on the fly! Optimization:
the machine that terminates the last starts the search.

@ Rendez-vous concept (RDV); Objectives: localisation of a
node without IP; task coordination; data recovery;

@ coordination protocol between machines participating in the
application.

PastryGrid

PastryGrid components

@ Addressing scheme to identify applications and users (based

on haching application name + submission date + user name
— DHT (Pastry))

@ Protocol of resource discovering; No dedicated nodes for the
search of the next node to use — on the fly! Optimization:
the machine that terminates the last starts the search.

@ Rendez-vous concept (RDV); Objectives: localisation of a
node without IP; task coordination; data recovery;

@ coordination protocol between machines participating in the
application.

PastryGrid

RDV Concept

@ Known at the beginning;

PastryGrid

RDV Concept

@ Known at the beginning;

@ Central element on a
decicated place;

PastryGrid

RDV Concept

@ Known at the beginning;

@ Central element on a
decicated place;

@ Failure: the system crashes;

PastryGrid

RDV Concept

@ Known at the beginning;

@ Central element on a
decicated place;

@ Failure: the system crashes;

@ Centralized resource
management;

PastryGrid

RDV Concept

@ Known at the beginning;

@ Central element on a
decicated place;

@ Failure: the system crashes;

@ Centralized resource
management;

@ Management of all
applications (overload)

PastryGrid

RDV Concept

@ Known at the beginning; @ Unknown;

@ Central element on a
decicated place;

@ Failure: the system crashes;

@ Centralized resource
management;

@ Management of all
applications (overload)

PastryGrid

RDV Concept

@ Known at the beginning; @ Unknown;

@ Central element on a @ Variable;
decicated place;

@ Failure: the system crashes;

@ Centralized resource
management;

@ Management of all
applications (overload)

PastryGrid

RDV Concept

@ Known at the beginning; @ Unknown;
@ Central element on a @ Variable;
decicated place; o Failure: may still run;

@ Failure: the system crashes;

@ Centralized resource
management;

@ Management of all
applications (overload)

PastryGrid

RDV Concept

@ Known at the beginning; @ Unknown;
@ Central element on a @ Variable;
decicated place; o Failure: may still run;
@ Failure: the system crashes; e Distributed data
@ Centralized resource management;
management;
@ Management of all
applications (overload) ’

PastryGrid

RDV Concept

@ Known at the beginning; @ Unknown;

@ Central element on a @ Variable;
decicated place; o Failure: may still run;

@ Failure: the system crashes; e Distributed data

@ Centralized resource management;
management; @ RDV for each application

@ Management of all (limited overload)
applications (overload) ’

PastryGrid

RDV Concept

@ Known at the beginning; @ Unknown;

@ Central element on a @ Variable;
decicated place; o Failure: may still run;

@ Failure: the system crashes; e Distributed data

@ Centralized resource management;
management; @ RDV for each application

@ Management of all (limited overload)
applications (overload) ’

PastryGrid

How PastryGrid works

@ Noeud de soumission

PastryGrid

How PastryGrid works

e :
{ P M3
@&—@®
N\ fé
M1
=~ el

® Noeud de soumission

@ Hash (Application Name + User Name + Submission Date):
Unique identifier Applicationld

PastryGrid

How PastryGrid works

® No=ud de soumission

@ Hash (Application Name + User Name + Submission Date):
Unique identifier Applicationld

@ Initialization of RDV: The machine which is closest numerically
to Applicationld

PastryGrid

How PastryGrid works

B e | T »>@ ROV
@—®
{ D M3
@re®
N ¥
M1
= & @ m==-- > Initdpplication

® Nceud de soumission

@ Hash (Application Name + User Name + Submission Date):
Unique identifier Applicationld

@ Initialization of RDV: The machine which is closest numerically
to Applicationld

@ Search for free machine and assignment of tasks T1, T2 and T3

PastryGrid

How PastryGrid works

2
Fo o

= = === > ImtApplication
. i R A i it > JYowWerk
P Nceeud de soumission

@ Hash (Application Name + User Name + Submission Date):
Unique identifier Applicationld

@ Initialization of RDV: The machine which is closest numerically
to Applicationld

@ Search for free machine and assignment of tasks T1, T2 and T3

PastryGrid

How PastryGrid works

990
Teoo

- —————p JourData
_____ »> DataRequest

@ Request and Data Recovery by M1, M2 and M3:
DataRequest and YourData

PastryGrid

How PastryGrid works

. . @
@ @ ROV
M5 @ @ M3
® (4
M1
= @

PastryGrid

How PastryGrid works

@ M1 assigns T4 to M4 that she had found

PastryGrid

How PastryGrid works

@ M1 assigns T4 to M4 that she had found
@ M3 ends T3 but does not seek a machine for T6

PastryGrid

How PastryGrid works

se® SearchRequest: . cociiinoonin s SRR EEEE G s e > YourWark

@ M1 assigns T4 to M4 that she had found
@ M3 ends T3 but does not seek a machine for T6

PastryGrid

How PastryGrid works

v
\

Ms5@ M3

®
O

—> SearchRequestReject | S &
sme P SearchRequest oo i ML > JowrWak

@ M1 assigns T4 to M4 that she had found
@ M3 ends T3 but does not seek a machine for T6

PastryGrid

How PastryGrid works

M5@ M3

—> SearchRequestReject & ~. el ————3 WorkDone
Lol e 10 O SEEERESE e, SRR > JourWork

@ M1 assigns T4 to M4 that she had found
@ M3 ends T3 but does not seek a machine for T6

PastryGrid

How PastryGrid works

M2 L 2
. # ®—®
@ ROV
; O,
M5@ M3 :
| z
MIN S~ 2
—> SearchRequestReject e - “a & ———3 WorkDone
+= =% SearchRequest I\'A_A Me oo > YourMaork

@ M1 assigns T4 to M4 that she had found
@ M3 ends T3 but does not seek a machine for T6

PastryGrid

How PastryGrid works

e~ - ——— WorkDone

tooo SemrchRequert i g > TourMork

@ M1 assigns T4 to M4 that she had found
@ M3 ends T3 but does not seek a machine for T6
@ M2 seeks M5 and M6 and assigns T5 and T6

PastryGrid

How PastryGrid works

M2 . 2
- S
A Sae b L
’ i
e =l P H :)
o RDV
)
’ v
y ; O,
Ms@ M3 O
| 4
SearchRequestAck MINT =~ . SearchReques
—> SearchReguestReject o - “ L] ——» WorkDone ——> SearchRequest
== SearchRequest ; Me s > JourWork == SearchReques

@ M1 assigns T4 to M4 that she had found
@ M3 ends T3 but does not seek a machine for T6
@ M2 seeks M5 and M6 and assigns T5 and T6

Fault Tolerance in PastryGrid

Fault Tolerance in PastryGrid

@ Passive replication based on Past (maintaining of k copies of
the node states) ; update copies when a modification occurs
on a source node; automatically creation of a copy (to

maintain k)

Fault Tolerance in PastryGrid

Fault Tolerance in PastryGrid

@ Passive replication based on Past (maintaining of k copies of
the node states) ; update copies when a modification occurs
on a source node; automatically creation of a copy (to
maintain k)

@ If we adopt such approach = node explosion;

Fault Tolerance in PastryGrid

Fault Tolerance in PastryGrid

@ Passive replication based on Past (maintaining of k copies of
the node states) ; update copies when a modification occurs
on a source node; automatically creation of a copy (to
maintain k)

@ If we adopt such approach = node explosion;

@ A new component has been added: FTC (Fault Tolerant
Component) node

e Supervises tasks that are running;

Fault Tolerance in PastryGrid

Fault Tolerance in PastryGrid

@ Passive replication based on Past (maintaining of k copies of
the node states) ; update copies when a modification occurs
on a source node; automatically creation of a copy (to
maintain k)

@ If we adopt such approach = node explosion;

@ A new component has been added: FTC (Fault Tolerant
Component) node
e Supervises tasks that are running;

o A FTC component for each application; It contacts the RDV
to decide the tasks to supervise;

Fault Tolerance in PastryGrid

Fault Tolerance in PastryGrid

@ Passive replication based on Past (maintaining of k copies of
the node states) ; update copies when a modification occurs
on a source node; automatically creation of a copy (to
maintain k)

@ If we adopt such approach = node explosion;

@ A new component has been added: FTC (Fault Tolerant
Component) node

e Supervises tasks that are running;

o A FTC component for each application; It contacts the RDV
to decide the tasks to supervise;

o k copies of the FTC and k copies of the RDV per application.
In fact you have 3 types of nodes: computing nodes, FTC
nodes and RDV nodes to manage;

Fault Tolerance in PastryGrid

Fault Tolerance in PastryGrid

@ Passive replication based on Past (maintaining of k copies of
the node states) ; update copies when a modification occurs
on a source node; automatically creation of a copy (to
maintain k)

@ If we adopt such approach = node explosion;

@ A new component has been added: FTC (Fault Tolerant
Component) node

e Supervises tasks that are running;

o A FTC component for each application; It contacts the RDV
to decide the tasks to supervise;

o k copies of the FTC and k copies of the RDV per application.
In fact you have 3 types of nodes: computing nodes, FTC
nodes and RDV nodes to manage;

Fault Tolerance in PastryGrid

Fault Tolerance in PastryGrid

FIC3

FIC1
) RDV2

FTC2
@ROVI

(Submission Node) M @ @roV3

Fault Tolerance in PastryGrid

Fault Tolerance in PastryGrid

FIC3
FTC1 RDV2
[]
A
y
Frc2/” ,* RDV1
ll _____ ".
S .-
(Submission Node) M |' ______ @roV3
N [
<= = RDVInit
ce=> FIChit M1 ® M2

@ M initializes the RDV and the FTC of the application

Fault Tolerance in PastryGrid

Fault Tolerance in PastryGrid

FIC3
FIC1 RDV2
o
=
7
Fic2”
g . »@RDVI
I' ----------
(Submission Node) M |;: ————— @RDV3
v Y
SRR
QN Tl 7
AN S o
ce-> RDVEit 3 Tty
==> FIChit M1 - M2 --> YourWork

@ M initializes the RDV and the FTC of the application
@ M assigns tasks T1, T2 to M1 and M2

Fault Tolerance in PastryGrid

Fault Tolerance in PastryGrid

FIC3

FTC1 ° RDV2
11 *
FTC24,¢ S
- SRV
e ‘\
P L ¥
(Submission Node) M =" - @roV3
A
N o~ S
& el 7
A e
. ~. .
> RDVEi X AN == RDVReplicas
. FTCReplicas
== FICit M1 @ M2 --> YourWork

@ M initializes the RDV and the FTC of the application

@ M assigns tasks T1, T2 to M1 and M2

@ PAST creates k (k = 2) replicas RDV1, RDV2 for RDV
and FTC1, FTC2 for FTC

Fault Tolerance in PastryGrid

Fault Tolerance in PastryGrid

FTC3

FIC1
@FRDV2

FTC2
@RDVI

(Submission Node) M ¢ @RDV3

M1 — M2

Fault Tolerance in PastryGrid

Fault Tolerance in PastryGrid

FTC3
FIC1 @rDV2
FTC2
@rDVI
A
(Submission Node) M @ @RDV3
N
——> TourData
M1 & M2

_____ > DataRequest

@ M1 and M2 recover from RDV, the data for T1 and T2

Fault Tolerance in PastryGrid

Fault Tolerance in PastryGrid

FTC3
FTC1
.RDV2
FTC2
@RV
A
(Submission Node) M @ @RDV3
\
Supervision'Tii
upermlwn rigger YourData
—> CheckAliveness M1 Py M2

----- > DataRequest

@ M1 and M2 recover from RDV, the data for T1 and T2
@ The RDV informed the FTC of running tasks (T1 and T2)

Fault Tolerance in PastryGrid

Fault Tolerance in PastryGrid

FTC3
FIC1

FTC2

(Submission Node) M @

SupervisionTrigger
—> CheckAliveness M1 P

YourData
DataRequest

@ M1 and M2 recover from RDV, the data for T1 and T2
@ The RDV informed the FTC of running tasks (T1 and T2)

@ The FTC supervises the execution of tasks T1 and T2
on M1 and M2

Fault Tolerance in PastryGrid

Fault Tolerance in PastryGrid

FTC3
FTC2

(Submission Node) M ¢

SupervisionTrigger
—> CheckAliveness

YourData
DataRequest

@ M1 and M2 recover from RDV, the data for T1 and T2
@ The RDV informed the FTC of running tasks (T1 and T2)

@ The FTC supervises the execution of tasks T1 and T2
on M1 and M2

Fault Tolerance in PastryGrid

PastryGrid Validation

The FT part

@ Intensive experiments have been conducted (each machine has
a probability P to fail for X seconds): P = 20%,40%, 80% ;
100 applications (2 to 128 // tasks) ; on 200 nodes

Fault Tolerance in PastryGrid

PastryGrid Validation

The FT part

@ Intensive experiments have been conducted (each machine has
a probability P to fail for X seconds): P = 20%,40%, 80% ;
100 applications (2 to 128 // tasks) ; on 200 nodes

@ Main observations:

o In all cases, PastryGrid terminates;

o The recovery time depends on the node type;

e The delay varies from 4:53s to 7:16:41s. .. but it works! The
number of delayed applications varies from 44 to 98.

Prob. Execution #Failed #Delayed #I'TC | # RDV

in % time (s) nodes applications nodes nodes
Scenario 1 20 2h, 13mn and 2secs 66 44 2 2
Scenario 2 50 3h, 22mn and 27secs 198 58 B 7
Scenario 3 80 9h, 24mn and 4Ysecs 583 98 12 14

Conclusion

Conclusion and Perspectives

Conclusion

@ PastryGrid: Fault-tolerant decentralized system for running
distributed applications with precedence between tasks

Conclusion

Conclusion and Perspectives

Conclusion

@ PastryGrid: Fault-tolerant decentralized system for running
distributed applications with precedence between tasks

@ Creation of a dynamic execution environment for each
application

Conclusion

Conclusion and Perspectives

Conclusion

@ PastryGrid: Fault-tolerant decentralized system for running
distributed applications with precedence between tasks

@ Creation of a dynamic execution environment for each
application

@ Decentralized collaboration between machines for application
tasks management

Conclusion

Conclusion and Perspectives

@ DG has proved to be relevant for resource sharing =
transpose this success story to the Cloud and Paa$S universes
= offer a technical alternate to Google, Salesforce, Amazon
big farm of servers

Conclusion

Conclusion and Perspectives

@ DG has proved to be relevant for resource sharing =
transpose this success story to the Cloud and Paa$S universes
= offer a technical alternate to Google, Salesforce, Amazon
big farm of servers

@ PastryGrid is based on emerging open source Cloud solution.
From an economic point of view: if it is less expensive to host
services locally and if it support a wide range of applications
— more potential partners, then small/medium size
companies will adopt PastryGrid;

Conclusion

Conclusion and Perspectives

@ DG has proved to be relevant for resource sharing =
transpose this success story to the Cloud and Paa$S universes
= offer a technical alternate to Google, Salesforce, Amazon
big farm of servers

@ PastryGrid is based on emerging open source Cloud solution.
From an economic point of view: if it is less expensive to host
services locally and if it support a wide range of applications
— more potential partners, then small/medium size
companies will adopt PastryGrid;

Conclusion

Fault-Tolerance for PastryGrid Middleware

Christophe Cérin!, Heithem Abbes!?, Mohamed Jemni?, Yazid
Missaoui?

LLIPN, Université de Paris XIll, CNRS UMR 7030, France
2UTIC, ESSTT, Université de Tunis, Tunisia

HPGC'10 - IPDPS

	Introduction
	PastryGrid
	Fault Tolerance in PastryGrid
	Conclusion

