
High performance Peer to Peer
Distributed Computing with

Application to Obstacle Problem

D. EL BAZ (LAAS-CNRS, Toulouse France)

Coauthors : T. T. NGUYEN, P. SPITERI, G. JOURJON, M. CHAU

funded by

HOTP2P 2010, April 23, 2010.

HOTP2P 2010, April 23, 2010. 2

Outline

Environment3

Experiments4

5 Conclusions

tt1 Goal

Self-adaptive protocol2

3

1. Goal

Great development of peer to peer applications
 File sharing, video, ...
 Recent advances in microprocessor architecture and

high bandwith network → new applications like
distributed HPC computing/computing on the Internet.

Great challenges
 Scalability,
 Heterogeneity,
 Volatility,
 Existing protocols, TCP, UDP not well suited to HPC.

HOTP2P 2010, April 23, 2010.

52 3 4

Goal Protocol Environment Experiments
1 5

Conclusions

4

1. Goal (cont’d)

High performance peer to peer computing:
 Task parallel model, distributed iterative methods.
 Direct communications between peers.
 Applications: numerical simulation & optimization.

Self-adaptive protocol:
 based on Cactus framework
 uses micro-protocols
 chooses dynamicaly the most appropriate communica-

tion mode in function of elements of context from
network level and choices at application level.

HOTP2P 2010, April 23, 2010.

52 3 4

Goal Protocol Environment Experiments
1 5

Conclusions

5

2. Self-adaptive protocol

Micro-protocols
 Introduced in x-kernel
 Approach to design self-adaptive communication protocols

Micro-protocols implement a functionnality (sample)
 Communication: Synchronous, Asynchronous.
 Fragmentation: FixeSize, Resize.
 Reliability: Retransmission, PositiveAck, NegativeAck, DuplicateAck.
 Order : LossyFifo, ReliableFifo.
 Congestion control: NewReno TCP Congestion Control.

Composition of micro-protocols → protocol
 Reuse code, facilitate design, configure dynamically.

HOTP2P 2010, April 23, 2010.

Protocol
54

Goal Environment Experiments
1 532

Conclusions

6

2. Self-adaptive protocol (cont’d)

Protocol composition framework → deployment of
architecture

 Hierarchical model (stack of protocols), x-kernel, APPIA frameworks.
 Nonhierarchical model (no order), Coyote and ADAPTIVE frame’ks.
 Hybrid model (combo), XQoS and Cactus frameworks → CTP.

Cactus framework
 flexible, efficient.
 Two grain levels:

Composite protocols : individual protocol made of micro-protocols.
Protocol stack : composite protocols layered on the top of each others.

 Protocols can reconfigure by substituting protocols or micro-protocols.

HOTP2P 2010, April 23, 2010.

Protocol
54

Goal Environment Experiments
1 532

Conclusions

7

2. Self-adaptive protocol (cont’d)

Cactus is an event based framework:
 Events: state changes, e.g. arrival of messages.

Micro-protocols structured as a collection of event
handlers:

 Event handler : procedure like segments of codes bound to events.
 When an event occurs all handlers bound to that event are executed.

Our modifications to Cactus → improve protocol
performance/facilitate reconfiguration:

 Concurrent handler execution (multicore machines).
 Eliminate unnecessary copies between layers (use pointers)
 Operation for micro-protocol removing.

HOTP2P 2010, April 23, 2010.

Protocol
54

Goal Environment Experiments
1 532

Conclusions

8

2. Self-adaptive protocol (cont’d)

P2PSAP protocol architecture

HOTP2P 2010, April 23, 2010.

Protocol
54

Goal Environment Experiments
1 532

Conclusions

~~~~~~~~~~~
Physical layer

Transport layer

API
~~~~~~~~~~~

Manages session
opening an closure

Captures context
information

Reconfigures data
channel/coordinates
peers

Transfers data
between peers

9

2. Self-adaptive protocol (cont’d)

Communication adaptation rules

HOTP2P 2010, April 23, 2010.

Scheme

Link
Synchronous Asynchronous Hybrid

Intra-cluster Synchronous
Reliable Com.

Asynchronous
Reliable Com.

Synchronous
Reliable Com.

Inter-cluster Synchronous
Reliable Com.

Asynchronous
Unreliable Com.

Asynchronous
Unreliable Com.

Protocol
54

Goal Environment Experiments
1 532

Conclusions

10

2. Self-adaptive protocol (cont’d)

Reconfiguration mechanism

HOTP2P 2010, April 23, 2010.

Protocol
54

Goal Environment Experiments
1 532

Conclusions

11

2. Self-adaptive protocol (cont’d)

Example of scenario

HOTP2P 2010, April 23, 2010.

Protocol
54

Goal Environment Experiments
1 532

Conclusions

12

3. Environment

Direct communication between peers
Reduced set of communication operations:

- only send and receive operations (P2P_send and P2P_receive).

- facilitate programming, hide complexity.
Communication mode can vary with context:

- programmer does not select directly a communication
mode (programmer can select a scheme of computation).
- communication mode depends on the context and is
determined by the protocol.
- good efficiency.

HOTP2P 2010, April 23, 2010.

Protocol
54

Goal Environment Experiments
1 532

Conclusions

13

3. Environment (cont’d)

P2PDC Environment architecture

HOTP2P 2010, April 23, 2010.

Protocol
54

Goal Environment Experiments
1 532

Conclusions

14

3. Environment (cont’d)

Application deployment

HOTP2P 2010, April 23, 2010.

Protocol
54

Goal Environment Experiments
1 532

Conclusions

15

4. Experiments

 3D Obstacle problem
- numerical simulation problems (pde)
- financial mathematics, e.g. option pricing
- mechanics

HOTP2P 2010, April 23, 2010.

ProtocolGoal Environment Experiments
51 532 4

Conclusions

16

4. Experiments (cont’d)

 Fixed point problem:

Distributed asynchronous iterative scheme:

HOTP2P 2010, April 23, 2010.

ProtocolGoal Environment Experiments
51 532 4

Conclusions

(5)

Presenter
Presentation Notes
Voici les résultats de mon expérimentation.

17

4. Experiments (cont’d)

Results
3D obstacle problem, slice decomposition, 3,000,000 variables,
NICTA testbed, Sidney.

HOTP2P 2010, April 23, 2010.

ProtocolGoal Environment Experiments
51 532 4

Conclusions

18

5. Conclusions

Self-adaptive protocol P2PSAP for P2P HPC
Current version of environment P2Pdc
Experiments on NICTA and Grid 5000 testbeds for

obstacle problem.
Decentralised functions of P2PDC.
 Improvements: code, protocol, environment.
Applications: process engineering, logistics.
Other testbeds PlanetLab (GENI).
 Self-organization → efficiency & everlastingness.

HOTP2P 2010, April 23, 2010.

ProtocolGoal Environment Experiments
51 32 4 5

Conclusions

	High performance Peer to Peer Distributed Computing with Application to Obstacle Problem
	Outline
	1. Goal
	1. Goal (cont’d)
	2. Self-adaptive protocol
	2. Self-adaptive protocol (cont’d)
	2. Self-adaptive protocol (cont’d)
	2. Self-adaptive protocol (cont’d)
	2. Self-adaptive protocol (cont’d)
	2. Self-adaptive protocol (cont’d)
	2. Self-adaptive protocol (cont’d)
	3. Environment
	3. Environment (cont’d)
	3. Environment (cont’d)
	4. Experiments
	4. Experiments (cont’d)
	4. Experiments (cont’d)
	5. Conclusions

