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1. Goal 

Great development of peer to peer applications
 File sharing, video, ...
 Recent advances in microprocessor architecture and 

high bandwith network → new applications like
distributed HPC computing/computing on the Internet.

Great challenges 
 Scalability,
 Heterogeneity,
 Volatility,
 Existing protocols, TCP, UDP not well suited to HPC.
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1. Goal (cont’d)

High performance peer to peer computing:
 Task parallel model, distributed iterative methods.
 Direct communications between peers.
 Applications: numerical simulation & optimization.

Self-adaptive protocol:
 based on Cactus framework
 uses micro-protocols
 chooses dynamicaly the most appropriate communica-

tion mode in function of elements of context from
network level and choices at application level.
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2. Self-adaptive protocol

Micro-protocols
 Introduced in x-kernel
 Approach to design self-adaptive communication protocols

Micro-protocols implement a functionnality (sample)
 Communication: Synchronous, Asynchronous.
 Fragmentation: FixeSize, Resize.
 Reliability: Retransmission, PositiveAck, NegativeAck, DuplicateAck.
 Order : LossyFifo, ReliableFifo.
 Congestion control: NewReno TCP Congestion Control.

Composition of micro-protocols → protocol
 Reuse code, facilitate design, configure dynamically.
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2. Self-adaptive protocol (cont’d)

Protocol composition framework → deployment of 
architecture

 Hierarchical model (stack of protocols), x-kernel, APPIA frameworks.
 Nonhierarchical model (no order), Coyote and ADAPTIVE frame’ks.
 Hybrid model (combo), XQoS and Cactus frameworks → CTP.

Cactus framework
 flexible, efficient.
 Two grain levels:

Composite protocols : individual protocol made of micro-protocols.
Protocol stack : composite protocols layered on the top of each others.

 Protocols can reconfigure by substituting protocols or micro-protocols.
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2. Self-adaptive protocol (cont’d)

Cactus is an event based framework:
 Events: state changes, e.g. arrival of messages.

Micro-protocols structured as a collection of event
handlers:

 Event handler : procedure like segments of codes bound to events.
 When an event occurs all handlers bound to that event are executed.

Our modifications to Cactus → improve protocol
performance/facilitate reconfiguration:

 Concurrent handler execution (multicore machines).
 Eliminate unnecessary copies between layers (use pointers)
 Operation for micro-protocol removing.
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2. Self-adaptive protocol (cont’d)

P2PSAP protocol architecture
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Manages session 
opening an closure

Captures context 
information

Reconfigures data
channel/coordinates 
peers

Transfers data
between peers
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2. Self-adaptive protocol (cont’d)

Communication adaptation rules

HOTP2P 2010, April 23, 2010.
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Synchronous
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Inter-cluster Synchronous
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Asynchronous
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2. Self-adaptive protocol (cont’d)

Reconfiguration mechanism

HOTP2P 2010, April 23, 2010.

Protocol
54

Goal Environment Experiments
1 532 

Conclusions



11

2. Self-adaptive protocol (cont’d)

Example of scenario
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3. Environment

Direct communication between peers
Reduced set of communication operations:

- only send and receive operations (P2P_send and P2P_receive).

- facilitate programming, hide complexity.
Communication mode can vary with context:

- programmer does not select directly a communication 
mode (programmer can select a scheme of computation).
- communication mode depends on the context and is
determined by the protocol.
- good efficiency. 

HOTP2P 2010, April 23, 2010.
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3. Environment (cont’d)

P2PDC Environment architecture

HOTP2P 2010, April 23, 2010.
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3. Environment (cont’d)

Application deployment
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4. Experiments 

 3D Obstacle problem
- numerical simulation problems (pde)
- financial mathematics, e.g. option pricing
- mechanics

HOTP2P 2010, April 23, 2010.
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4. Experiments (cont’d) 

 Fixed point problem:

Distributed asynchronous iterative scheme:

HOTP2P 2010, April 23, 2010.
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4. Experiments (cont’d)  

Results
3D obstacle problem, slice decomposition, 3,000,000 variables, 
NICTA testbed, Sidney.
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5. Conclusions  

Self-adaptive protocol P2PSAP for P2P HPC
Current version of environment P2Pdc
Experiments on NICTA and Grid 5000 testbeds for 

obstacle problem.
Decentralised functions of P2PDC.
 Improvements: code, protocol, environment.
Applications: process engineering, logistics.
Other testbeds PlanetLab (GENI).
 Self-organization → efficiency & everlastingness.

HOTP2P 2010, April 23, 2010.
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