
UNIBUS:

ASPECTS OF HETEROGENEITY

AND FAULT TOLERANCE

IN CLOUD COMPUTING

Emory University, Dept. of Mathematics and Computer Science

Atlanta, GA, USA

Atlanta, Georgia, April 19, 2010

in conjunction with IPDPS 2010

Magdalena Slawinska

Jaroslaw Slawinski

Vaidy Sunderam

{magg, jaross, vss}@mathcs.emory.edu

Creating a problem

User

Rackspace

cloud

1. What do I want?

Execute an MPI application

2. What do I need?

 Target resource: MPI cluster

3. What do I have?

 Access to the Rackspace

cloud

4. Why might I want FT on cloud?

 To reduce costs (money, time,

energy, …)

 Reliability

 …

5. What is the overhead

introduced by FT?

6. Can I do that? How?

2. What do I need?

 Target resource: MPI cluster

 FT services: Checkpoint,

Heartbeat

2

Problem

User

Rackspace cloud

User’s requirements

Execute MPI software

Target resource: MPI cluster

Target platform: FT-flavor

User’s resources

 Rackspace cloud (credentials)

Available resource

Target resource

Resource

transformation

Manually:

 interaction with web page

 prepare the image: install

required software and

dependencies

 instantiate servers

 configure passwordless

authentication

….

 1 man-hour for 16+1 nodes

EC2 cloud

Workstations

3

Unibus: a resource orchestrator

Rackspace cloud

Available resource

Target resource

EC2 cloud

Unibus

User’s requirements

Execute MPI software

Target resource: MPI cluster

Target platform: FT-flavor

User’s resources

 Rackspace cloud (credentials)User

4

Workstations

Outline

 Unibus – an infrastructure framework that allows

to orchestrate resources

 Resource access virtualization

 Resource provisioning

 Unibus – FT MPI platform on demand

 Automatic assembly of an FT MPI-enabled platform

 Execution of an MPI application on the Unibus-

created FT MPI-enabled platform

 Discussion of the FT overhead

5

Unibus resource sharing model

Traditional Model Proposed Model

Resource exposition Virtual Organization (VO) Resource provider

Resource usage Determined by VO Determined by a particular

resource provider

Resource virtualization

and aggregation

Resource providers belonging

to VO

Software at the client side

6

 Resources exposed
in an arbitrary
manner as access
points

 Capability Model to
abstract operations
available on
provider’s resources

 Mediators to
implement the
specifics of access
points

 Knowledge engine
to infer relevant
facts

7

Network

Resources access points

Unibus

Capability Model

Mediators

access

daemon library

implements

implements

access protocols

Engine

uses

Handling heterogeneity in Unibus

User

Complicating

a big picture …

 Resources exposed in an
arbitrary manner as access
points

 Capability Model to abstract
operations on resources

 Mediators to implement the
specifics of access points

 Knowledge engine to infer
relevant fact

 Resource descriptors to
describe resources
semantically (OWL-DL)

 Services (standard and third
parties), e.g., heartbeat,
checkpoint, resource
discovery, etc.

 Metaapplications to
orchestrate execution of
applications on relevant
resources

8

implements

access protocols

Network

Unibus access device

Unibus

Capability Model

Mediators

Services

Access daemon

library

Services

Engine

Resource

descriptors

Resources

Access

points

implements

Metaapplications

User

Virtualizing access to resources

Capability Model and mediators

 Capability Model

Provides virtually
homogenized access
to heterogeneous
resources

Specifies abstract
operations, grouped in
interfaces

 Interface hierarchy not
appropriate (e.g.
fs:ITransferable and
ssh:ISftp)

 Mediators

 Implement resource
access point protocols

binding

Workstations

Rackspace

cloudCluster

Ssh AP
Implements details

9

Virtualizing access to resources
10

shell

exec

subsystem

ISsh

Ssh Mediator

invoke_shell

exec_command

get_subsystem

get_subsytemsftp

….

Workstation

sshd

implements

compatibleWith

Knowledge engine

User

Mediator’s

Developer

implements

implements

implements

ISsh

shell

exec

subsystem

Operating

System

Linux

…

Ssh Mediator

invoke_shell

exec_command

get_subsystem

…

Access

Point
Open

SshD

…

some

compatibleWith
Resource

emily

…

some

hasOS

hasAccessPoint

Knowledge

Engine

(inferring)

compatibleWith

Request

interface

ISsh

Knowledge Set

Resource:

emily

hasOperation

11

Composite operations

ISimpleCloud

addhosts

deletehosts

IRackspace

create_server

delete_server

Rackspace

Mediator

create_server

delete_server

implements

Def …

Def …

ISimpleCloud_RS.py

Composite

operation

definition

entry point

dependsOn
implements

rs_addhosts

Composite operation

rs_addhosts

a.k.a. addhosts

implements

Rs_addhosts dependsOn
create_server

Create_server is
implemented by RS
Mediator

Rs_addhosts implements
addhosts

So RS mediator
implements addhosts

Composite operations

 Dynamically expand
mediator’s operations

 May result in classification
of mediators and
compatible resources to
new interfaces

12

Rackspace

Cloud

Resource access unification via

composite operations

ISimpleCloud

addhosts

deletehosts

IRackspace

create_server

delete_server

EC2 Mediator

run_instance

…

Rackspace

Mediator

create_server

delete_server

IEC2

run_instance

…

implements implements

Composite

operations

EC2 cloud
Rackspace

Cloud

ec2_addhosts rs_addhosts

Different resources, yet

semantically similar

Eliminating

need of standardization
Unified interface

ec2_addhosts

Def …

Def …

Def …

Def …

rs_addhosts

13

User

Resource provisioning

Homogenizing resource heterogeneity

 Conditioning increases resource specialization

levels

 Soft conditioning

 changes resource software capabilities

 e.g., installing MPI enables execution of MPI apps

 Successive conditioning

 enhances resource capabilities in terms of available

access points (may use soft conditioning)

 e.g., deploying Globus Toolkit makes the resource

accessible via Grid protocols

14

Transforming Rackspace to

FT-enabled MPI platform

User

Unibus

Metaapp

Rackspace

descriptor

User’s requirements

Execute software: NAS Parellel

Benchmarks (NPB)

Target resource: MPI cluster

FT services: Heartbeat, Checkpoint

User’s

credentials

NPB logs

Rackspace

Soft conditioning

Successive cond.

Composite ops

…

FT MPI cluster

15

Rackspace Cloud to MPI cluster

Creating a new group of

resources (Rackspace ssh-

enabled servers) in terms of

new access points

Obtaining a higher level of

abstraction

Deployment of MPI on new

resources

Installing other services

(FT)

16

Metaapplications
17

Network

Unibus access device

Unibus

Capability Model

Mediators

Services

Services

Engine

Resource descriptors

Resources

Metaapplications

User

User’s requirements

Execute software: NAS Parellel

Benchmarks (NPB)

Target resource: MPI cluster

FT services: Heartbeat, Checkpoint

Metaapplication

Metaapplication

 Requests

 IClusterMPI

 FT services:

 IHeartbeat

 ICheckpointRestart

 Specifies available
resources

 Performs benchmarks

 Transfers benchmarks
execution logs to the head
node

 Requests ISftp

18

Rackspace testbed

• RAM

1GB

• 40GB

HDD

• RAM

256MB

• 10GB

HDD

dmtcp_checkpoint –j –h \

headNode_privateIP mpirun …

dmtcp_coordinator

FT setup: Private IPs

 16 working nodes (WN) + 1 head node (HN)

 Node: 4-core, 64-bit, AMD 2GHz

 Debian 5.0 (Lenny)

 OpenMPI v. 1.3.4 (GNU suite v. 4.3.2 (gcc,

gfortran)

 NAS Parallel Benchmarks v.3.3, class B

Heartbeat service:

 OpenMPI-based – in case of failure, the service

determines failes node(s) and raises an exception

Checkpoint/restart service:

 DMTCP – Distributed MultiThreaded CheckPointing

 user-level transparent checkpointing

 Executes dmtcp_command every 60 secs on HN to checkpoint 81 processes (64 MPI

processes, 16+1 OpenMPI supervisor processes)

 Moves local checkpoint files from WN to HN (in parallel)

 Checkpoint time – 5 sec; moving checkpoints from WN -> HN less than10 sec;

compressed checkpoint size c.a.1GB

dmtcp_command

19

Results: NPB, class B, Rackspace,

DMTCP, OpenMPI Heartbeat
16 Worker Nodes (WN) + 1 Head Node

WN: 4-core, 64-bit, AMD Opteron 2GH, 1GB RAM, 40 GB HDD

Checkpoints every 60 sec, average of 8 series

HB - HeartbeatFT overhead 2% - 10%

20

Checkpoints every 60 sec

Summary

 The Unibus infrastructure framework
 Virtualization of access to various resources

 Automatic resource provisioning

 Innovatively used to assemble an FT MPI execution
platform on cloud resources
 Reduces effort to bare minimum (servers instantiation,

etc)
 15-20 min from 1 man-hour

 Observed FT overhead 2%-10% (expected at least 8%)

 Future work
 Migration and restart of MPI-based computations on

two different clouds or a cloud and a local cluster

 Work with an MPI application

21

