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Introduction

Motivation

@ "Unfortunately, Byzantine agreement requires a number of
messages quadratic in the number of participants, so it is
infeasible for use in synchronizing a large number of replicas”
[REGWZK, '03].

@ "Eventually batching cannot compensate for the quadratic
number of messages [of Practical Byzantine Fault Tolerance
(PBFT)]" [CMLRS, '05].

@ "The communication overhead of Byzantine Agreement is
inherently large" [CWL "09] .
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Introduction

Motivation

Why Byzantine Agreement is important:

@ Tells us how to build a reliable system from unreliable
components.
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Introduction

Byzantine Agreement

@ Each processor starts with an initial input bit.

@ Each good processor outputs the same bit b, this bit must equal
one of the input bits.

@ A hidden subset of n/3 processors are bad and they may behave
arbitrarily.
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Introduction

Leader Election

Another related problem we consider here is Leader Election:

@ Some good processor p is elected as the leader and is known by
all processors.

@ With constant probability, p is good (there is no way to elect a
good processor with certainty when there are bad processors).
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Introduction

Universe Reduction

A generalisation of Leader Election:

@ Some set C (of size O(log® n)) is elected and known by all
processors.

@ With high probability (1 — o(1)), C is good i.e . a majority of the
processors in C are good.
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Introduction

Our Results

Theory: Can Solve Byzantine Agreement(Leader Election and Universe
Reduction) with each processor sending O(v/n) bits [KS, "09].

Practice: Significant improvements in bandwidth starting at about 16k
processors.[This talk]
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Almost Everywhere Byzantine Agreement via Universe Reduction
The Algorithm

Our Approach

@ Almost Everywhere Universe Reduction: There is a set C of size
O(log® n) that is good and is known by a 1 — e fraction of good
processors.

@ Almost Everywhere to Everywhere:

e CdoesB.A.
e Everybody knows C and C’s output.
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Almost Everywhere Byzantine Agreement via Universe Reduction
The Algorithm

Universe Reduction

Problem

@ The challenge? Our adversary can insert a greater than
expected fraction of bad processors in the subset selected.
Solution:Use randomness to select the processors.

@ How to do this by avoiding sending O(n) messages per
processor. Solution:Use election graph to elect this subset.
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Almost Everywhere Byzantine Agreement via Universe Reduction
The Algorithm

Almost Everywhere Universe Reduction

@ We can reduce message complexity by using an election graph
[KSSV, 06,07].

@ The nodes in this graph are groups of O(In n) processors called
committees.

@ The election proceeds in layers.
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Almost Everywhere Byzantine Agreement via Universe Reduction
The Algorithm

Election Graph
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Almost Everywhere Byzantine Agreement via Universe Reduction
The Algorithm

Election Graph
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Almost Everywhere Byzantine Agreement via Universe Reduction
The Algorithm

Election Graph
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Almost Everywhere Byzantine Agreement via Universe Reduction
The Algorithm

The Election graph.

@ Initially at layer 0 we have the leaves of the election graph.

@ Each node in the election graph elects a committee of O(log n)
size selected from the nodes below.
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Almost Everywhere Byzantine Agreement via Universe Reduction
The Algorithm

Gains of using cryptography

New Ideas: We use [AS, 2006] to elect random processors within
committees of size ©(In n).

@ Can reduce committee size of ©(In n) from [KSSV,05].
@ This reduces message complexity at each layer.
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Almost Everywhere Byzantine Agreement via Universe Reduction
The Algorithm

Election Scheme.

@ Select the processors to advance by running the [AS, 2006]
algorithm within each committee.

@ A committee is good if >2/3 of the processors are good.

@ Use samplers to spread out bad processors so that with high
probability (probability 1 — 1/n¢ where c is a constant and ¢ > 0)
most of the committees in the next layer of elections are good.
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From Almost Everywhere to everywhere(AE2E)

Result

At the end of the A.E. protocol:

@ There is a set C of size O(log® n) with a 2/3 fraction of good
processors.

@ Each processor p, has a guess C, for C.
@ For a majority of good processors p, C, = C
Next step: Ensure everyone knows C.
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From Almost Everywhere to everywhere(AE2E)

Almost Everywhere to Everywhere.

Goal: Ensure everyone knows C.
@ |dea: Each processor polls O(log n) processors.
@ Problem: Spam! Bad processors send spurious requests.

@ |dea: Polling requests sent through C, shich enforces few
requests per processor

@ Problem: Not everyone knows C!

18/34



From Almost Everywhere to everywhere(AE2E)

AE2E contd.

@ |dea: p sends it’s poll (of O(log n)) to O(v/n) randomly selected
processors. Hopefully, someone in this set will forward the poll to
C.

@ Each processor only forwards messages received from a set of
O(+/nlog? n) random processors.

@ Birthday paradox ensures some processor will forward p’s poll.
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From Almost Everywhere to everywhere(AE2E)

AE2E contd.

@ C forwards p’s poll to the appropriate processors.

@ A processor answers a requests that it receives from a majority
of C's members.
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From Almost Everywhere to everywhere(AE2E)

Sketch of communication flow in AE2E.

p List,, Cy Poll, p
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From Almost Everywhere to everywhere(AE2E)

AEZ2E contd

@ Problem: If a confused processor thinks it is in C, it will send
many messages.

@ Solution: Protocol starts with a check to see if a processor is in C.
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From Almost Everywhere to everywhere(AE2E)

Theorem

Our algorithm has the following properties:

@ With high probability all of the good processors learn the value of
the bit.

@ Each processor sends O(+/nlog? n) messages.
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Experimental Results

Experiments

@ We performed a simulation of our algorithm for n from 1000 to
about 4,000,000 processors.

@ Compared with CKS algorithm which uses cryptography.
@ Measured bandwidth and latency.
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Experimental Results

Log log plot total bits sent

plot of log total number of bits sent vs. log number of nodes
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Experimental Results

Log log plot total messages sent

log total number of messages sent vs. log number of nodes
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Experimental Results

Latency
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Experimental Results

Conclusion

@ Can Solve BA( and Universe Reduction) with Oy/n bits
communication per processor.

@ Practical improvement on networks of size about 16k nodes.
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Future work

Future directions

@ Further reduce message complexity?
@ Use a sparse communication network?
@ More realistic simulations?

@ Handle the asynchronous case?
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Future work

Future work

Less is more:
@ Further reduce message complexity to O(log? n) per processor.

@ |deas : Better algorithm for choosing a random peer, running
elections recursively.
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Future work

Sparse communication network

Want:
@ A sparse communication network is more practical.

@ Need communication network with lots of vertex disjoint nodes,
S0 routing messages can be fault tolerant.
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Future work

Detailed simulation

@ Some p2p networks could be as large as ten million nodes.

@ Simulate on a cluster, as this more closely simulates real world
conditions.
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Future work

Asynchronous case.

@ The asynchronous communication is a more realistic model of
network communication.

@ Can we make the algorithm asynchronous and keep the
bandwidth bounds on the algorithm the same?
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Future work

Questions

@ Questions ?
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