
Evaluating Database-Oriented Replication 
Schemes in Software Transacional Memory 
Systems

Roberto Palmieri
Francesco Quaglia
(La Sapienza, University of Rome, Italy)

Paolo Romano
Nuno Carvalho
(INESC-ID, Lisbon, Portugal)



STM
Software Transactional 

Memory

A Software Transactional Memory is a mechanism for 
controlling concurrent accesses to a shared memory

STM systems represent an emerging attractive programming 
model for multi-core systems

They mask concurrency management to the overlying 
applications

They spare the programmers from the pitfalls of conventional 
manual lock-based synchronization, significantly simplifying 
the development of parallel and concurrent applications

They are typically distributed via libraries to be included in 
the development of  application programs



Dependability of STM

Replication is a typical mean  for achieving transactional 
systems dependability

Active Replication (AR) is a common replication scheme

 In AR each replica keeps the entire shared data-set and 
executes the same transactions in the same order

AR is based on two phases:
 agreement on common execution order -> consensus/atomic 

broadcast
 deterministic execution on each replica -> filtering out sources of 

non-determinism



Atomic Broadcast

Atomic Broadcast (AB) is a service that ensures an agreement on a 
common Global Serialization Order of transactions among replicas

AB is a paradigm used as a building block to run transactions in the 
same order on all replicas

 It is a particular instance of a Consensus protocol

The coordination phase run  by the AB protocol determines a latency 
that can heavily influence performance



Optimistic Atomic 
Broadcast

Optimistic Atomic Broadcast (OAB) is an improvement of the 
Atomic Broadcast service

OAB enriches AB with a new event called optimistic delivery

Participants acquire information about the existence of a 
message before any common order for message treatment 
gets defined

The transactional system may early start processing 
activities, provided that these activities are effectively 
carried out on the basis of the guessed order

OAB is particularly useful where the guess about message 
order is reliable (e.g. in local area network)



Work’s targets

Evaluate replication solutions, originally tailored for database 
systems, in the context of STM systems

The system model is based on Active Replication 
implemented using an Optimistic Atomic Broadcast service

 It is also based on  realistic STM settings

 In case of possible efficiency lacks, provide (qualitatively and 
quantitatively) ideas for filing these lacks

Propose innovative approaches for addressing performance 
improvements in replicated STM systems



DBMS & STMS 
Workload characterization

The workload of applications in STM environments is different 
from DBMS applications
 Transaction execution time in STM is typically several orders of 

magnitude smaller than in conventional database environments
 Transactions in STMs entail main memory read/write operations, 

without interactions with stable storage
 In replicated STM systems, the small transaction execution time 

leads to an amplification of the impact of the cost of the 
coordination phase among replicas

 Longer stall periods in processing activities lead to a possible 
underutilization of hardware resources



DBMS & STMS 
Data Layout

The layout of data-sets in STM Systems is completely 
different from its counterpart in DBMS applications
 The number of shared objects in STM Systems is typically very low 

compared to DBMSs
 In STM systems it’s hard to group shared objects, unlike in DBMSs 

(e.g. tables or views)
 Due to different data layouts, partial locking over the whole data 

set in STM systems is complex, unlike in DBMSs where locks can 
operate at the granularity of single tables

 Implementation of concurrency control schemes based on  
knowledge (or safe estimation) of data sets accessed by 
transactions can lead in STM systems to locking all the objects 
within the shared memory



Simulation study

We compared two common active replication protocols:
 State Machine Approach:
 Based on Atomic Broadcast
 The idea of this protocol is that each transaction waits until the 

atomic broadcast service notifies the transaction order, after 
the transaction is activated.

 Optimistic Approach:
 Based on Optimistic Atomic Broadcast
 It requires a priori knowledge of read/write set of transactions
 This protocol, exploiting optimistic delivery, early starts 

processing transactions that don’t conflict with each other. 
Conflicting transactions wait until the OAB notifies the final 
correct serialization order. 



Simulation study

Three benchmarks for STM Systems:
 RB-Tree (Mean Transaction Execution Time: 77 microsec)
 SkipList (Mean Transaction Execution Time: 281 microsec)
 List (Mean Transaction Execution Time: 324 microsec)

Benchmarks are applications that perform repeated 
insertion, removal, and search of a randomly chosen integer 
in a set of pre-configurable integer values



Simulation study

Trace-based simulation with realistic data access patterns

(Optimistic) Atomic Broadcast service entails the possibility 
of batching messages to improve performance

Atomic Broadcast delays:
 Optimistic delivery: 500microsec
 Final (total ordered) delivery: 2millisec

LAN environment with no mismatch between optimistic and 
final deliveries



RB-Tree results

RB-Tree benchmark with medium data contention

State Machine Vs Optimistic
 realistic data access pattern of transactions (fine)
 overestimation of lock granularity (coarse)



SkipList Results

SkipList benchmark with high data contention

State Machine Vs Optimistic
 realistic data access pattern of transactions (fine)
 overestimation of lock granularity (coarse)



List Results

List benchmark with very high data contention

State Machine Vs Optimistic
 realistic data access pattern of transactions (fine)
 overestimation of lock granularity (coarse)



CPU

Each replica is  composed by:
 8 cores per replica
 Processor: 2.53Ghz
 RAM:4Gb

At the saturation point, CPU utilization is < 20%



Considerations

STM workloads manifest, on average, high data contention 
respect to DBMS workloads

 In such a case, the optimistic protocol blocks most of the 
transactions and this is reflected in :
 minimization of the overlap between coordination and processing
 underutilization of resources
 scalability problems



Possible approaches

 Increase the optimism while processing transactions that are 
not yet final delivered

Maximize the overlap between replicas coordination and 
local process of transactions

Avoid protocols that need knowledge about read/write set of 
transactions

Avoid coarse approaches that can boil down to locking all the 
shared objects



Boosting
the optimistic approach

Capture the event of complete transaction

When a transaction performs all its operations and waits for 
the notification of the final order (completes), releases all its 
locks

With the early released of locks, a conflict transaction can be 
started according to the optimistic delivery order

Especially useful when the guess on the optimistic delivery 
order is reliable 



RB-Tree results

RB-Tree benchmark

Atomic Broadcast service batched (1,2,4,8)

 We show the gain from the Boosting protocol (called AGGRO) Vs 
standard Optimistic approach



SkipList Results

SkipList benchmark

Atomic Broadcast service batched (1,2,4,8)

We show the gain from the Boosting protocol (called AGGRO) 
Vs standard Optimistic approach



List Results

List benchmark

Atomic Broadcast service batched (1,2,4,8)

We show the gain from the Boosting protocol (called AGGRO) 
Vs standard Optimistic approach



 

Thank you for your attention


