
Optimizing MPI Communication Within Large 
Multicore Nodes with Kernel Assistance

S. Moreaud, B. Goglin, D. Goodell, R. Namyst

University of Bordeaux
RUNTIME team, LaBRI – INRIA, France

Argonne National Laboratory



  2

Context

Increasing complexity of computing nodes

→ Need for efficient intranode communication

Dedicated intranode communication model

Interprocess communication 

→ MPI dominates 

Increasing number of cores



  3

Traditional intranode MPI 

Double-Buffering

– Using shared memory buffers  

–  2 copies required 

– Pipelined strategy



  4

Double-Buffering experiment

Dual Quad-Core Intel Xeon 2.33 GHz Clovertown

Intel MPI Benchmark (IMB) Pingpong 

MPICH2-nemesis MPI implementation



  5

IMB Pingpong with Double-Buffering
(2.33GHz Clovertown)



  6

IMB Pingpong with Double-Buffering 
no cache re-usage

(2.33GHz Clovertown)



  7

Double-Buffering
So what?

✔Efficient for small messages
– latency for 0-byte MPI message < 200ns 

✗ High CPU use

✗ Cache pollution

✗ Bandwidth consumption 

→ Need large shared cache to be efficient 

How to improve performance for large data 
transfers? 



  8

MPICH2-Nemesis

Kernel space

Application

MPICH2

Ch3

Nemesis

Large Message Transfer (LMT)Shared Memory

User space
shm-copy

64 ko
? 



  9

MPICH2-Nemesis + KNEM

Kernel space

Application

MPICH2

Ch3

Nemesis

Large Message Transfer (LMT)Shared Memory

User space
shm-copy knem

KNEM

64 ko
    ...



  10

What's KNEM?

KNEM (Kernel Nemesis)

– Dedicated Linux kernel module

– Single memory copy

– Synchronous and asynchronous modes

KNEM+I/OAT 

– Offloading copy on Intel Input/Output Acceleration 
Technology 

– Efficient copy in background

– CPU and cache not involved

– Performance does not depend on process location

Available in MPICH2 and soon in OpenMPI



  11

KNEM: Point to point 
performances

(2.33GHz Clovertown)



  12

KNEM: Point to point 
performances

(2.33GHz Clovertown)



  13

KNEM: Point to point 
performances

(2.33GHz Clovertown)



  14

What to expect?

Intranode communication performance vary with

– Strategy (double buffering, KNEM, KNEM+I/OAT)

– Placement, cache size

– Optimization by dynamically switching between 
strategies?

What is the impact of the location on larger 
architectures?

What about contention?

– Collective operations?

– Application?



  15

Experimentation Platform

 4 Intel-based architectures

– Dual Quad-Core Clovertown 2.33 GHz 

– Dual Quad-Core Nehalem 2.66 GHz

– Quad Hexa-Core Dunnington 2.66 GHz

– 4 Quad Hexa-Core Dunnington 2.66 GHz NUMA 
nodes (without I/OAT)

Various number of cores (8, 24, 64)

Different shared caches 



  16

Experimentation Platform
Relative placements



  17

Experimentation Platform
Relative placements



  18

Experimentation Platform
Relative placements



  19

Experimentation Platform
Relative placements



  20

Experimentation Platform
Relative placements



  21

Experimentation Platform
Relative placements



  22

Impact of process placement
IMB Pingpong (NUMA Dunnington)



  23

Impact of process placement

Shared memory double copy faster than KNEM for 
small messages 

KNEM better for medium and large messages 
without shared cache (> 16 KiB)

I/OAT interesting starting at 16 KiB, except on 
Nehalem

Switching between strategies point-to-point model 
based

What about collective operations? 



  24

Collectives: N-to-One Pattern
IMB Reduce (2.66 GHz Nehalem, np=8)



  25

Collectives: One-to-N Pattern
IMB Scatter (2.66 GHz Dunnington, np=16)



  26

Collectives: N-to-N Pattern
IMB Alltoall (2.33 GHz Clovertown, np=8)



  27

Collectives: N-to-N Pattern
IMB Alltoall (NUMA Dunnington, np=64)



  28

Collective operations

All-to-N, One-to-N Pattern

– Double buffering still faster for small messages

– KNEM more interesting for larger messages ( >128KiB)

– Behavior and  threshold vary slightly with the hosts

N-to-N Pattern

– Alltoall: biggest dependency of placement and topology
● KNEM improve performance on all architectures 

→ from 50% to 100%

→ significantly reducing contention 



  29

NAS Parallel Benchmark

Machine KNEM

Hannibal8

14.60s 13.90s +5.0%
63.77s 60.31s +5.7%
0.70s 0.60s +16.6%
2.81s 2.41s +16.6%

Bill8

40.43s 36.02s +12.2%
175.46s 158.36s +10.8%
2.42s 1.89s +12.2%
10.04s 8.02s +25.2%

Idkonn24

24.14s 21.70s +11.2%
97.65s 85.73s +13.9%
1.29s 0.99s +30.3%
5.88s 4.43s +32.7%

Bertha96

31.91s 28.82s +10.7%
727.37s 645.36s +12.7%
3.17s 2.29s +38.4%
65.00s 52.72s +23.3%

Benchmark Nemesis Speedup
ft.B.8
ft.C.8
is.B.8
is.C.8
ft.B.8
ft.C.8
is.B.8
is.C.8
ft.B.16
ft.C.16
is.B.16
is.C.16
ft.C.64
ft.D.64
is.C.64
is.D.64



  30

Conclusion

Analysis of intranode MPI communication 

– Double Buffering, KNEM kernel-assisted single copy 
– Different multicore machines

→ Double-Buffering more sensitive to placement

→ KNEM interesting  for large message

→ Complex behavior of collective operations 

– Dynamically choosing the best strategy is difficult

→ I/OAT only useful for obsolete architectures 

→ Large performance improvement with KNEM on NAS



  31

Future Works

Improving the KNEM interface

– send/receive-oriented → multiple accesses to a 
single buffer

– receiver-directed data transfer relaxed → All-to-
one

Improving dynamic adaptation to strategy

– Inside collective operation algorithms 

– Processes location, message size...



Questions?

stephanie.moreaud@labri.fr
(goodell@mcs.anl.gov)

http://runtime.bordeaux.inria.fr/knem
http://www.mcs.anl.gov/research/projects/mpich2

mailto:stephanie.moreaud@labri.fr
http://runtime.bordeaux.inria.fr/knem

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32

