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Context

Increasing complexity of computing nodes

→ Need for efficient intranode communication

Dedicated intranode communication model

Interprocess communication 

→ MPI dominates 

Increasing number of cores
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Traditional intranode MPI 

Double-Buffering

– Using shared memory buffers  

–  2 copies required 

– Pipelined strategy
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Double-Buffering experiment

Dual Quad-Core Intel Xeon 2.33 GHz Clovertown

Intel MPI Benchmark (IMB) Pingpong 

MPICH2-nemesis MPI implementation
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IMB Pingpong with Double-Buffering
(2.33GHz Clovertown)
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IMB Pingpong with Double-Buffering 
no cache re-usage

(2.33GHz Clovertown)
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Double-Buffering
So what?

✔Efficient for small messages
– latency for 0-byte MPI message < 200ns 

✗ High CPU use

✗ Cache pollution

✗ Bandwidth consumption 

→ Need large shared cache to be efficient 

How to improve performance for large data 
transfers? 
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MPICH2-Nemesis

Kernel space

Application

MPICH2

Ch3

Nemesis

Large Message Transfer (LMT)Shared Memory

User space
shm-copy

64 ko
? 
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MPICH2-Nemesis + KNEM

Kernel space

Application

MPICH2

Ch3

Nemesis

Large Message Transfer (LMT)Shared Memory

User space
shm-copy knem

KNEM

64 ko
    ...
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What's KNEM?

KNEM (Kernel Nemesis)

– Dedicated Linux kernel module

– Single memory copy

– Synchronous and asynchronous modes

KNEM+I/OAT 

– Offloading copy on Intel Input/Output Acceleration 
Technology 

– Efficient copy in background

– CPU and cache not involved

– Performance does not depend on process location

Available in MPICH2 and soon in OpenMPI
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KNEM: Point to point 
performances

(2.33GHz Clovertown)
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KNEM: Point to point 
performances

(2.33GHz Clovertown)
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KNEM: Point to point 
performances

(2.33GHz Clovertown)



  14

What to expect?

Intranode communication performance vary with

– Strategy (double buffering, KNEM, KNEM+I/OAT)

– Placement, cache size

– Optimization by dynamically switching between 
strategies?

What is the impact of the location on larger 
architectures?

What about contention?

– Collective operations?

– Application?
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Experimentation Platform

 4 Intel-based architectures

– Dual Quad-Core Clovertown 2.33 GHz 

– Dual Quad-Core Nehalem 2.66 GHz

– Quad Hexa-Core Dunnington 2.66 GHz

– 4 Quad Hexa-Core Dunnington 2.66 GHz NUMA 
nodes (without I/OAT)

Various number of cores (8, 24, 64)

Different shared caches 
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Experimentation Platform
Relative placements
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Experimentation Platform
Relative placements
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Experimentation Platform
Relative placements
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Experimentation Platform
Relative placements
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Experimentation Platform
Relative placements
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Experimentation Platform
Relative placements
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Impact of process placement
IMB Pingpong (NUMA Dunnington)
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Impact of process placement

Shared memory double copy faster than KNEM for 
small messages 

KNEM better for medium and large messages 
without shared cache (> 16 KiB)

I/OAT interesting starting at 16 KiB, except on 
Nehalem

Switching between strategies point-to-point model 
based

What about collective operations? 
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Collectives: N-to-One Pattern
IMB Reduce (2.66 GHz Nehalem, np=8)
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Collectives: One-to-N Pattern
IMB Scatter (2.66 GHz Dunnington, np=16)
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Collectives: N-to-N Pattern
IMB Alltoall (2.33 GHz Clovertown, np=8)
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Collectives: N-to-N Pattern
IMB Alltoall (NUMA Dunnington, np=64)
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Collective operations

All-to-N, One-to-N Pattern

– Double buffering still faster for small messages

– KNEM more interesting for larger messages ( >128KiB)

– Behavior and  threshold vary slightly with the hosts

N-to-N Pattern

– Alltoall: biggest dependency of placement and topology
● KNEM improve performance on all architectures 

→ from 50% to 100%

→ significantly reducing contention 
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NAS Parallel Benchmark

Machine KNEM

Hannibal8

14.60s 13.90s +5.0%
63.77s 60.31s +5.7%
0.70s 0.60s +16.6%
2.81s 2.41s +16.6%

Bill8

40.43s 36.02s +12.2%
175.46s 158.36s +10.8%
2.42s 1.89s +12.2%
10.04s 8.02s +25.2%

Idkonn24

24.14s 21.70s +11.2%
97.65s 85.73s +13.9%
1.29s 0.99s +30.3%
5.88s 4.43s +32.7%

Bertha96

31.91s 28.82s +10.7%
727.37s 645.36s +12.7%
3.17s 2.29s +38.4%
65.00s 52.72s +23.3%

Benchmark Nemesis Speedup
ft.B.8
ft.C.8
is.B.8
is.C.8
ft.B.8
ft.C.8
is.B.8
is.C.8
ft.B.16
ft.C.16
is.B.16
is.C.16
ft.C.64
ft.D.64
is.C.64
is.D.64
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Conclusion

Analysis of intranode MPI communication 

– Double Buffering, KNEM kernel-assisted single copy 
– Different multicore machines

→ Double-Buffering more sensitive to placement

→ KNEM interesting  for large message

→ Complex behavior of collective operations 

– Dynamically choosing the best strategy is difficult

→ I/OAT only useful for obsolete architectures 

→ Large performance improvement with KNEM on NAS
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Future Works

Improving the KNEM interface

– send/receive-oriented → multiple accesses to a 
single buffer

– receiver-directed data transfer relaxed → All-to-
one

Improving dynamic adaptation to strategy

– Inside collective operation algorithms 

– Processes location, message size...



Questions?

stephanie.moreaud@labri.fr
(goodell@mcs.anl.gov)

http://runtime.bordeaux.inria.fr/knem
http://www.mcs.anl.gov/research/projects/mpich2

mailto:stephanie.moreaud@labri.fr
http://runtime.bordeaux.inria.fr/knem
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