
Exploiting Constraints to Build a Flexible and 

Extensible Data Stream Processing

Middleware

Workshop  on Scalable Stream Processing Systems (SSPS)

IPDPS 2010, Atlanta/Georgia, USA

19.04.2010

Nazario Cipriani, Carlos Lübbe, Alexander Moosbrugger



Universität Stuttgart
SFB 627

Data Stream Processing Systems – Some Foundations

 Context-aware applications need context data to be processed

 Context-aware systems utterly heterogeneous

 Nearby sensors produce context data streams that needs to be processed online

 Not convenient to first store and then process offline due to high data volume

 Use Data Stream Processing Systems (DSPS)!

 Data streams are handled by Data Stream Processing Systems

 A.k.a. Data Stream Management Systems (DSMS)

 Data streams are processed according to some processing definition

 Push-based processing paradigm instead of pull-based

 Today's DSPS offer a broad range of sophisticated and efficient 
processing schemes for online data stream processing

 Well suited for general purpose data stream processing

2



Universität Stuttgart
SFB 627

Agenda

 Non-Trivial Application Scenario of a Distributed Visualization Pipeline

 Adaptation Problem for non-trivial Applications

 Gap Between Application’s and System’s Interests

 Constraints Classification

 Enhancing the NexusDS Platform by Constraints

 NexusDS Platform Overview

 Network Groups and Operator Model

 Constraint-Based Data Flow Graphs

 Enhanced Processing Model Supporting Constraints

 Conclusion and Future Work

3



Universität Stuttgart
SFB 627

Data Stream:
Bus, Taxi, and

User Locations

Static Data:
Buildings & Streets
Points of Interest

Client: Image Stream

e.g., Smartphones, PDAs, etc.

Visualization-Pipeline

Sources Operators Sinks

Parameter Updates

Sample Scenario – Distributed Visualization Pipeline

Merge & Filtering:
Selection of

Nearby Objects

Mapping:
Rectangular Map

with 3D Buildungs

Rendering:
Projection
Rasterize

User Location Updates

4



Universität Stuttgart
SFB 627

Data Stream:
Bus, Taxi, and

User Locations

Static Data:
Buildings & Streets
Points of Interest

Client: Image Stream

e.g., Smartphones, PDAs, etc.

Visualization-Pipeline

Sources Operators Sinks

Parameter Updates

Sample Scenario – Distributed Visualization Pipeline

5

Merge & Filtering:
Selection of

Nearby Objects

Mapping:
Rectangular Map

with 3D Buildungs

Rendering:
Projection
Rasterize

User Location Updates

Built-In Operator can be 

used here

 Exploit already 

existing operators!

Custom Operator to 

define the Mapping

Process for Data to 

Rendering Primitives!

Dedicated hardware can 

improve performance

 Exploit specialized 

hardware is reasonable!

5



Universität Stuttgart
SFB 627

Data Stream:
Bus, Taxi, and

User Locations

Static Data:
Buildings & Streets
Points of Interest

Client: Image Stream

e.g., Smartphones, PDAs, etc.

Visualization-Pipeline

Sources Operators Sinks

Parameter Updates

Sample Scenario – Distributed Visualization Pipeline

Merge & Filtering:
Selection of

Nearby Objects

Mapping:
Rectangular Map

with 3D Buildungs

Rendering:
Projection
Rasterize

User Location Updates

Mobile devices still have 

limited capabilities (energy)

 Outsource processes 

if possible!

6



Universität Stuttgart
SFB 627

Requirements for DSPS to Support Non-Trivial Applications?

 Extensible operator base

 Complex domain specific operators, may require dedicated hardware

 Support for structured and unstructured data: “Tuples” vs. images, videos

 Heterogeneous system topology

 System with wide range of devices in mind – powerful computing servers vs. 

mobile devices

 Exploit available hardware for efficient execution

 Operator has deployment and runtime restrictions

 Influence deployment and runtime of operators in processing pipelines

7



Universität Stuttgart
SFB 627

Adaptation Gap between Applications and DSPS

 Many different (distributed) context data streams  Use distributed DSPS

 Applications or domains may ask for specific functionality

 But still depending on general stream processing principles

 Reuse existing components, “do not reinvent the wheel”!

8Adaptation Problem

Data Stream 

Processing System 

(DSPS)

Domain-specific Data 

Stream Application

8



Universität Stuttgart
SFB 627

Adaptation Gap between Applications and DSPS

9

 Many different (distributed) context data streams  Use distributed DSPS

 Applications or domains may ask for specific functionality

 But still depending on general stream processing principles

 Reuse existing components, “do not reinvent the wheel”!

9Adaptation Problem

Data Stream 

Processing System 

(DSPS)

Domain-specific Data 

Stream Application

Adapt DSPS to Application 1

Adapt Application to DSPS 2

9



Universität Stuttgart
SFB 627

Adaptation Gap between Applications and DSPS

10

 Many different (distributed) context data streams  Use distributed DSPS

 Applications or domains may ask for specific functionality

 But still depending on general stream processing principles

 Reuse existing components, “do not reinvent the wheel”!

10Adaptation Problem

Data Stream 

Processing System 

(DSPS)

Domain-specific Data 

Stream Application

Adapt DSPS to Application

Domain-specific Data 

Stream Processing 

System

Adapt Application to DSPS 

Adapt DSPS to Application 1

3

Adapt Application to DSPS 2

10



Universität Stuttgart
SFB 627

Constraints Classification

System-Relevant

Constraints
Domain-Relevant

Constraints

Application-Relevant 

Constraints

User-Relevant

Constraints

Runtime ConstraintsDeployment Constraints

Freely

Modifiable

Bounded

Modifiable

11



Universität Stuttgart
SFB 627

NexusDS Platform Overview

Nexus Domain ExtensionsNexus Domain ExtensionsNexus Domain Extensions Domain ServicesDomain Operators

Nexus Applications & ExtensionsNexus Applications & ExtensionsNexus Applications and Extensions Application Operators Application Services

Communication and Monitoring
Service Publisher

Service (SPS)
Monitoring Service (MS)

Nexus Core

Core Query Service (CQS)

Operator Execution
Service (OES)

Operator Repository
Service (ORS)

Core Operators

12



Universität Stuttgart
SFB 627

NexusDS Platform Overview

Nexus Domain ExtensionsNexus Domain ExtensionsNexus Domain Extensions Domain ServicesDomain Operators

Nexus Applications & ExtensionsNexus Applications & ExtensionsNexus Applications and Extensions Application Operators Application Services

Communication and Monitoring
Service Publisher

Service (SPS)
Monitoring Service (MS)

Nexus Core

Core Query Service (CQS)

Operator Execution
Service (OES)

Operator Repository
Service (ORS)

Core Operators

User-Relevant Constraints Application-Relevant Constraints

Domain-Relevant Constraints

System-Relevant Constraints

13



Universität Stuttgart
SFB 627

Classification of Runtime Environments

 Organization scheme of  available environments to reduce deployment 

complexity

 Access corresponding groups to get available execution environments

Nexus Group

Core Group

Peer Properties Group

Hardware

x86 CPU Architecture

ATI RV730 GPU

…

Software
Windows

JVM 1.5

…

Visualization Group

Arbitrary Domain Group
Arbitrary Domain 

Subgroup

.....

User-Relevant
Application-Relevant

Domain-Relevant
System-Relevant

14



Universität Stuttgart
SFB 627

Operator Packages – Overview

 Meta Data

 Defines operator’s properties

 Descriptor

 Requirements  Deployment

 Presets  Runtime

 Program Code

 Actual operator implementation

 Dependencies

 Third party libraries

Meta Data

Program Code

Operator Package

Dependencies

User-Relevant
Application-Relevant

Domain-Relevant
System-Relevant

15



Universität Stuttgart
SFB 627

Data Stream:
Bus, Taxi, and

User Locations

Constraint-Based Data Flow Graphs

16

Static Data:
Buildings & Streets
Points of Interest

Client: Image Stream

e.g., Smartphones, PDAs, etc.

Merge & Filtering:
Selection of

Nearby Objects

Mapping:
Rectangular Map

with 3D Buildungs

Rendering:
Projection
Rasterize

Runtime

Buffer = 10

Resolution = 800x600

FPS = 20

Deployment

NodeID = 007…009

OperatorID = 123

Hardware= GPU

Deployment

Name = Mapping

Author = Me

Runtime

Buffer = 100

Model_Detail = Medium

User-Relevant
Application-Relevant

Domain-Relevant
System-Relevant

16



Universität Stuttgart
SFB 627

Deployment Model – Visualization Pipeline Sample Scenario

Nexus Core

Nexus Domain
Extension

Nexus
Application

Communication and
Monitoring

1

Extension
Developer

S

C

S

Operator
Repository 

Service (ORS)

Physical Layer
UMPC Client

(IntelA110 @ 800MHz,
1GB RAM)

PC
(AMD X2 @ 1,6GHz,

2GB RAM)

Buildings, Streets,
POIs

Bus Locations

1

Create the domain 

service and operators

 Constraints!

User-Relevant Application-Relevant Domain-Relevant System-Relevant

Visualization Pipeline
Service (VPS)

Core Query
Service (CQS)

Operator Execution
Service (OES)

Monitoring
Service (MS)

Visual Client (VC)

R
Rendering Step

(Operator) M
Mapping Step

(Operator) F
Filtering & Merge Step

(Operator) S
Mobile Objects &

Buildings (Sources)
C

Client Application
(Sink)

GPU-enabled PC
(AMD X2 @ 1,6GHz,

2GB RAM,
Nvidia-GF GO 7200)

GPU-enabled PC
(AMD X2 @ 1,6GHz,

2GB RAM,
Nvidia-GF GO 7200)

17



Universität Stuttgart
SFB 627

18

Deployment Model – Visualization Pipeline Sample Scenario

Nexus Core

Nexus Domain
Extension

Nexus
Application

Communication and
Monitoring

2

Extension
Developer

S

C

S

Visualization Pipeline
Service (VPS)

Core Query
Service (CQS)

Operator Execution
Service (OES)

Monitoring
Service (MS)

Visual Client (VC)

Operator
Repository 

Service (ORS)

R
Rendering Step

(Operator) M
Mapping Step

(Operator) F
Filtering & Merge Step

(Operator) S
Mobile Objects &

Buildings (Sources)
C

Client Application
(Sink)

Physical Layer
UMPC Client

(IntelA110 @ 800MHz,
1GB RAM)

PC
(AMD X2 @ 1,6GHz,

2GB RAM)

Buildings, Streets,
POIs

Bus Locations

User wants a certain 

resolution, 800x600

 Constraint!

User-Relevant Application-Relevant Domain-Relevant System-Relevant

Application wants certain 

frame rate, 20 FPS

 Constraint!

GPU-enabled PC
(AMD X2 @ 1,6GHz,

2GB RAM,
Nvidia-GF GO 7200)

GPU-enabled PC
(AMD X2 @ 1,6GHz,

2GB RAM,
Nvidia-GF GO 7200)

18



Universität Stuttgart
SFB 627

19

Deployment Model – Visualization Pipeline Sample Scenario

Nexus Core

Nexus Domain
Extension

Nexus
Application

Communication and
Monitoring

3

Extension
Developer

S

C

S

Visualization Pipeline
Service (VPS)

Core Query
Service (CQS)

Operator Execution
Service (OES)

Monitoring
Service (MS)

Visual Client (VC)

Operator
Repository 

Service (ORS)

R
Rendering Step

(Operator) M
Mapping Step

(Operator) F
Filtering & Merge Step

(Operator) S
Mobile Objects &

Buildings (Sources)
C

Client Application
(Sink)

Physical Layer
UMPC Client

(IntelA110 @ 800MHz,
1GB RAM)

PC
(AMD X2 @ 1,6GHz,

2GB RAM)

Buildings, Streets,
POIs

Bus Locations

Only well known (secure) 

Nodes should be used!

 Constraint!

User-Relevant Application-Relevant Domain-Relevant System-Relevant

GPU-enabled PC
(AMD X2 @ 1,6GHz,

2GB RAM,
Nvidia-GF GO 7200)

GPU-enabled PC
(AMD X2 @ 1,6GHz,

2GB RAM,
Nvidia-GF GO 7200)

19



Universität Stuttgart
SFB 627

20

Deployment Model – Visualization Pipeline Sample Scenario

Nexus Core

Nexus Domain
Extension

Nexus
Application

Communication and
Monitoring

Extension
Developer

S

C

S

Visualization Pipeline
Service (VPS)

Core Query
Service (CQS)

Operator Execution
Service (OES)

Monitoring
Service (MS)

Visual Client (VC)

Operator
Repository 

Service (ORS)

4.1

R
Rendering Step

(Operator) M
Mapping Step

(Operator) F
Filtering & Merge Step

(Operator) S
Mobile Objects &

Buildings (Sources)
C

Client Application
(Sink)

Physical Layer
UMPC Client

(IntelA110 @ 800MHz,
1GB RAM)

PC
(AMD X2 @ 1,6GHz,

2GB RAM)

Buildings, Streets,
POIs

Bus Locations

At least one node (Render) 

with GPU needed!

 Constraint!

All constraints must be checked 

against available resources!

User-Relevant Application-Relevant Domain-Relevant System-Relevant

GPU-enabled PC
(AMD X2 @ 1,6GHz,

2GB RAM,
Nvidia-GF GO 7200)

GPU-enabled PC
(AMD X2 @ 1,6GHz,

2GB RAM,
Nvidia-GF GO 7200)

20



Universität Stuttgart
SFB 627

21

Deployment Model – Visualization Pipeline Sample Scenario

Nexus Core

Nexus Domain
Extension

Nexus
Application

Communication and
Monitoring

Extension
Developer

S

C

S

Visualization Pipeline
Service (VPS)

Core Query
Service (CQS)

Operator Execution
Service (OES)

Monitoring
Service (MS)

Visual Client (VC)

Operator
Repository 

Service (ORS)

R
Rendering Step

(Operator) M
Mapping Step

(Operator) F
Filtering & Merge Step

(Operator) S
Mobile Objects &

Buildings (Sources)
C

Client Application
(Sink)

Physical Layer
UMPC Client

(IntelA110 @ 800MHz,
1GB RAM)

PC
(AMD X2 @ 1,6GHz,

2GB RAM)

Buildings, Streets,
POIs

Bus Locations

GPU!

Secure!

User-Relevant Application-Relevant Domain-Relevant System-Relevant

GPU-enabled PC
(AMD X2 @ 1,6GHz,

2GB RAM,
Nvidia-GF GO 7200)

GPU-enabled PC
(AMD X2 @ 1,6GHz,

2GB RAM,
Nvidia-GF GO 7200)

21



Universität Stuttgart
SFB 627

22

Deployment Model – Visualization Pipeline Sample Scenario

Nexus Core

Nexus Domain
Extension

Nexus
Application

Communication and
Monitoring

Extension
Developer

R
S

C

S

Visualization Pipeline
Service (VPS)

Core Query
Service (CQS)

Operator Execution
Service (OES)

Monitoring
Service (MS)

Visual Client (VC)

Operator
Repository 

Service (ORS)

R
Rendering Step

(Operator) M
Mapping Step

(Operator) F
Filtering & Merge Step

(Operator) S
Mobile Objects &

Buildings (Sources)
C

Client Application
(Sink)

Physical Layer
UMPC Client

(IntelA110 @ 800MHz,
1GB RAM)

PC
(AMD X2 @ 1,6GHz,

2GB RAM)

Buildings, Streets,
POIs

Bus Locations

FM

User-Relevant Application-Relevant Domain-Relevant System-Relevant

4.2

4.2

GPU-enabled PC
(AMD X2 @ 1,6GHz,

2GB RAM,
Nvidia-GF GO 7200)

22



Universität Stuttgart
SFB 627

Conclusion and Future Work

 Adaptation problem for non-trivial applications

 Identified requirements to satisfy needs of specific applications

 Based on non-trivial example of distributed visualization pipeline

 Heterogeneous system topologies, highly domain-specific operators, operators 
connect their execution to explicit runtime and deployment restrictions

 Constraints!

 Deployment is done according to pre-defined requirements on different 
levels (constraints)

 Future things to do

 Create suitable constraint-definition language to express complex constraint-links

 Optimize deployment and execution process in terms of costs

23



Universität Stuttgart
SFB 627

Finish… And Flowers for You!24


