
Exploiting Constraints to Build a Flexible and

Extensible Data Stream Processing

Middleware

Workshop on Scalable Stream Processing Systems (SSPS)

IPDPS 2010, Atlanta/Georgia, USA

19.04.2010

Nazario Cipriani, Carlos Lübbe, Alexander Moosbrugger

Universität Stuttgart
SFB 627

Data Stream Processing Systems – Some Foundations

 Context-aware applications need context data to be processed

 Context-aware systems utterly heterogeneous

 Nearby sensors produce context data streams that needs to be processed online

 Not convenient to first store and then process offline due to high data volume

 Use Data Stream Processing Systems (DSPS)!

 Data streams are handled by Data Stream Processing Systems

 A.k.a. Data Stream Management Systems (DSMS)

 Data streams are processed according to some processing definition

 Push-based processing paradigm instead of pull-based

 Today's DSPS offer a broad range of sophisticated and efficient
processing schemes for online data stream processing

 Well suited for general purpose data stream processing

2

Universität Stuttgart
SFB 627

Agenda

 Non-Trivial Application Scenario of a Distributed Visualization Pipeline

 Adaptation Problem for non-trivial Applications

 Gap Between Application’s and System’s Interests

 Constraints Classification

 Enhancing the NexusDS Platform by Constraints

 NexusDS Platform Overview

 Network Groups and Operator Model

 Constraint-Based Data Flow Graphs

 Enhanced Processing Model Supporting Constraints

 Conclusion and Future Work

3

Universität Stuttgart
SFB 627

Data Stream:
Bus, Taxi, and

User Locations

Static Data:
Buildings & Streets
Points of Interest

Client: Image Stream

e.g., Smartphones, PDAs, etc.

Visualization-Pipeline

Sources Operators Sinks

Parameter Updates

Sample Scenario – Distributed Visualization Pipeline

Merge & Filtering:
Selection of

Nearby Objects

Mapping:
Rectangular Map

with 3D Buildungs

Rendering:
Projection
Rasterize

User Location Updates

4

Universität Stuttgart
SFB 627

Data Stream:
Bus, Taxi, and

User Locations

Static Data:
Buildings & Streets
Points of Interest

Client: Image Stream

e.g., Smartphones, PDAs, etc.

Visualization-Pipeline

Sources Operators Sinks

Parameter Updates

Sample Scenario – Distributed Visualization Pipeline

5

Merge & Filtering:
Selection of

Nearby Objects

Mapping:
Rectangular Map

with 3D Buildungs

Rendering:
Projection
Rasterize

User Location Updates

Built-In Operator can be

used here

 Exploit already

existing operators!

Custom Operator to

define the Mapping

Process for Data to

Rendering Primitives!

Dedicated hardware can

improve performance

 Exploit specialized

hardware is reasonable!

5

Universität Stuttgart
SFB 627

Data Stream:
Bus, Taxi, and

User Locations

Static Data:
Buildings & Streets
Points of Interest

Client: Image Stream

e.g., Smartphones, PDAs, etc.

Visualization-Pipeline

Sources Operators Sinks

Parameter Updates

Sample Scenario – Distributed Visualization Pipeline

Merge & Filtering:
Selection of

Nearby Objects

Mapping:
Rectangular Map

with 3D Buildungs

Rendering:
Projection
Rasterize

User Location Updates

Mobile devices still have

limited capabilities (energy)

 Outsource processes

if possible!

6

Universität Stuttgart
SFB 627

Requirements for DSPS to Support Non-Trivial Applications?

 Extensible operator base

 Complex domain specific operators, may require dedicated hardware

 Support for structured and unstructured data: “Tuples” vs. images, videos

 Heterogeneous system topology

 System with wide range of devices in mind – powerful computing servers vs.

mobile devices

 Exploit available hardware for efficient execution

 Operator has deployment and runtime restrictions

 Influence deployment and runtime of operators in processing pipelines

7

Universität Stuttgart
SFB 627

Adaptation Gap between Applications and DSPS

 Many different (distributed) context data streams  Use distributed DSPS

 Applications or domains may ask for specific functionality

 But still depending on general stream processing principles

 Reuse existing components, “do not reinvent the wheel”!

8Adaptation Problem

Data Stream

Processing System

(DSPS)

Domain-specific Data

Stream Application

8

Universität Stuttgart
SFB 627

Adaptation Gap between Applications and DSPS

9

 Many different (distributed) context data streams  Use distributed DSPS

 Applications or domains may ask for specific functionality

 But still depending on general stream processing principles

 Reuse existing components, “do not reinvent the wheel”!

9Adaptation Problem

Data Stream

Processing System

(DSPS)

Domain-specific Data

Stream Application

Adapt DSPS to Application 1

Adapt Application to DSPS 2

9

Universität Stuttgart
SFB 627

Adaptation Gap between Applications and DSPS

10

 Many different (distributed) context data streams  Use distributed DSPS

 Applications or domains may ask for specific functionality

 But still depending on general stream processing principles

 Reuse existing components, “do not reinvent the wheel”!

10Adaptation Problem

Data Stream

Processing System

(DSPS)

Domain-specific Data

Stream Application

Adapt DSPS to Application

Domain-specific Data

Stream Processing

System

Adapt Application to DSPS

Adapt DSPS to Application 1

3

Adapt Application to DSPS 2

10

Universität Stuttgart
SFB 627

Constraints Classification

System-Relevant

Constraints
Domain-Relevant

Constraints

Application-Relevant

Constraints

User-Relevant

Constraints

Runtime ConstraintsDeployment Constraints

Freely

Modifiable

Bounded

Modifiable

11

Universität Stuttgart
SFB 627

NexusDS Platform Overview

Nexus Domain ExtensionsNexus Domain ExtensionsNexus Domain Extensions Domain ServicesDomain Operators

Nexus Applications & ExtensionsNexus Applications & ExtensionsNexus Applications and Extensions Application Operators Application Services

Communication and Monitoring
Service Publisher

Service (SPS)
Monitoring Service (MS)

Nexus Core

Core Query Service (CQS)

Operator Execution
Service (OES)

Operator Repository
Service (ORS)

Core Operators

12

Universität Stuttgart
SFB 627

NexusDS Platform Overview

Nexus Domain ExtensionsNexus Domain ExtensionsNexus Domain Extensions Domain ServicesDomain Operators

Nexus Applications & ExtensionsNexus Applications & ExtensionsNexus Applications and Extensions Application Operators Application Services

Communication and Monitoring
Service Publisher

Service (SPS)
Monitoring Service (MS)

Nexus Core

Core Query Service (CQS)

Operator Execution
Service (OES)

Operator Repository
Service (ORS)

Core Operators

User-Relevant Constraints Application-Relevant Constraints

Domain-Relevant Constraints

System-Relevant Constraints

13

Universität Stuttgart
SFB 627

Classification of Runtime Environments

 Organization scheme of available environments to reduce deployment

complexity

 Access corresponding groups to get available execution environments

Nexus Group

Core Group

Peer Properties Group

Hardware

x86 CPU Architecture

ATI RV730 GPU

…

Software
Windows

JVM 1.5

…

Visualization Group

Arbitrary Domain Group
Arbitrary Domain

Subgroup

.....

User-Relevant
Application-Relevant

Domain-Relevant
System-Relevant

14

Universität Stuttgart
SFB 627

Operator Packages – Overview

 Meta Data

 Defines operator’s properties

 Descriptor

 Requirements  Deployment

 Presets  Runtime

 Program Code

 Actual operator implementation

 Dependencies

 Third party libraries

Meta Data

Program Code

Operator Package

Dependencies

User-Relevant
Application-Relevant

Domain-Relevant
System-Relevant

15

Universität Stuttgart
SFB 627

Data Stream:
Bus, Taxi, and

User Locations

Constraint-Based Data Flow Graphs

16

Static Data:
Buildings & Streets
Points of Interest

Client: Image Stream

e.g., Smartphones, PDAs, etc.

Merge & Filtering:
Selection of

Nearby Objects

Mapping:
Rectangular Map

with 3D Buildungs

Rendering:
Projection
Rasterize

Runtime

Buffer = 10

Resolution = 800x600

FPS = 20

Deployment

NodeID = 007…009

OperatorID = 123

Hardware= GPU

Deployment

Name = Mapping

Author = Me

Runtime

Buffer = 100

Model_Detail = Medium

User-Relevant
Application-Relevant

Domain-Relevant
System-Relevant

16

Universität Stuttgart
SFB 627

Deployment Model – Visualization Pipeline Sample Scenario

Nexus Core

Nexus Domain
Extension

Nexus
Application

Communication and
Monitoring

1

Extension
Developer

S

C

S

Operator
Repository

Service (ORS)

Physical Layer
UMPC Client

(IntelA110 @ 800MHz,
1GB RAM)

PC
(AMD X2 @ 1,6GHz,

2GB RAM)

Buildings, Streets,
POIs

Bus Locations

1

Create the domain

service and operators

 Constraints!

User-Relevant Application-Relevant Domain-Relevant System-Relevant

Visualization Pipeline
Service (VPS)

Core Query
Service (CQS)

Operator Execution
Service (OES)

Monitoring
Service (MS)

Visual Client (VC)

R
Rendering Step

(Operator) M
Mapping Step

(Operator) F
Filtering & Merge Step

(Operator) S
Mobile Objects &

Buildings (Sources)
C

Client Application
(Sink)

GPU-enabled PC
(AMD X2 @ 1,6GHz,

2GB RAM,
Nvidia-GF GO 7200)

GPU-enabled PC
(AMD X2 @ 1,6GHz,

2GB RAM,
Nvidia-GF GO 7200)

17

Universität Stuttgart
SFB 627

18

Deployment Model – Visualization Pipeline Sample Scenario

Nexus Core

Nexus Domain
Extension

Nexus
Application

Communication and
Monitoring

2

Extension
Developer

S

C

S

Visualization Pipeline
Service (VPS)

Core Query
Service (CQS)

Operator Execution
Service (OES)

Monitoring
Service (MS)

Visual Client (VC)

Operator
Repository

Service (ORS)

R
Rendering Step

(Operator) M
Mapping Step

(Operator) F
Filtering & Merge Step

(Operator) S
Mobile Objects &

Buildings (Sources)
C

Client Application
(Sink)

Physical Layer
UMPC Client

(IntelA110 @ 800MHz,
1GB RAM)

PC
(AMD X2 @ 1,6GHz,

2GB RAM)

Buildings, Streets,
POIs

Bus Locations

User wants a certain

resolution, 800x600

 Constraint!

User-Relevant Application-Relevant Domain-Relevant System-Relevant

Application wants certain

frame rate, 20 FPS

 Constraint!

GPU-enabled PC
(AMD X2 @ 1,6GHz,

2GB RAM,
Nvidia-GF GO 7200)

GPU-enabled PC
(AMD X2 @ 1,6GHz,

2GB RAM,
Nvidia-GF GO 7200)

18

Universität Stuttgart
SFB 627

19

Deployment Model – Visualization Pipeline Sample Scenario

Nexus Core

Nexus Domain
Extension

Nexus
Application

Communication and
Monitoring

3

Extension
Developer

S

C

S

Visualization Pipeline
Service (VPS)

Core Query
Service (CQS)

Operator Execution
Service (OES)

Monitoring
Service (MS)

Visual Client (VC)

Operator
Repository

Service (ORS)

R
Rendering Step

(Operator) M
Mapping Step

(Operator) F
Filtering & Merge Step

(Operator) S
Mobile Objects &

Buildings (Sources)
C

Client Application
(Sink)

Physical Layer
UMPC Client

(IntelA110 @ 800MHz,
1GB RAM)

PC
(AMD X2 @ 1,6GHz,

2GB RAM)

Buildings, Streets,
POIs

Bus Locations

Only well known (secure)

Nodes should be used!

 Constraint!

User-Relevant Application-Relevant Domain-Relevant System-Relevant

GPU-enabled PC
(AMD X2 @ 1,6GHz,

2GB RAM,
Nvidia-GF GO 7200)

GPU-enabled PC
(AMD X2 @ 1,6GHz,

2GB RAM,
Nvidia-GF GO 7200)

19

Universität Stuttgart
SFB 627

20

Deployment Model – Visualization Pipeline Sample Scenario

Nexus Core

Nexus Domain
Extension

Nexus
Application

Communication and
Monitoring

Extension
Developer

S

C

S

Visualization Pipeline
Service (VPS)

Core Query
Service (CQS)

Operator Execution
Service (OES)

Monitoring
Service (MS)

Visual Client (VC)

Operator
Repository

Service (ORS)

4.1

R
Rendering Step

(Operator) M
Mapping Step

(Operator) F
Filtering & Merge Step

(Operator) S
Mobile Objects &

Buildings (Sources)
C

Client Application
(Sink)

Physical Layer
UMPC Client

(IntelA110 @ 800MHz,
1GB RAM)

PC
(AMD X2 @ 1,6GHz,

2GB RAM)

Buildings, Streets,
POIs

Bus Locations

At least one node (Render)

with GPU needed!

 Constraint!

All constraints must be checked

against available resources!

User-Relevant Application-Relevant Domain-Relevant System-Relevant

GPU-enabled PC
(AMD X2 @ 1,6GHz,

2GB RAM,
Nvidia-GF GO 7200)

GPU-enabled PC
(AMD X2 @ 1,6GHz,

2GB RAM,
Nvidia-GF GO 7200)

20

Universität Stuttgart
SFB 627

21

Deployment Model – Visualization Pipeline Sample Scenario

Nexus Core

Nexus Domain
Extension

Nexus
Application

Communication and
Monitoring

Extension
Developer

S

C

S

Visualization Pipeline
Service (VPS)

Core Query
Service (CQS)

Operator Execution
Service (OES)

Monitoring
Service (MS)

Visual Client (VC)

Operator
Repository

Service (ORS)

R
Rendering Step

(Operator) M
Mapping Step

(Operator) F
Filtering & Merge Step

(Operator) S
Mobile Objects &

Buildings (Sources)
C

Client Application
(Sink)

Physical Layer
UMPC Client

(IntelA110 @ 800MHz,
1GB RAM)

PC
(AMD X2 @ 1,6GHz,

2GB RAM)

Buildings, Streets,
POIs

Bus Locations

GPU!

Secure!

User-Relevant Application-Relevant Domain-Relevant System-Relevant

GPU-enabled PC
(AMD X2 @ 1,6GHz,

2GB RAM,
Nvidia-GF GO 7200)

GPU-enabled PC
(AMD X2 @ 1,6GHz,

2GB RAM,
Nvidia-GF GO 7200)

21

Universität Stuttgart
SFB 627

22

Deployment Model – Visualization Pipeline Sample Scenario

Nexus Core

Nexus Domain
Extension

Nexus
Application

Communication and
Monitoring

Extension
Developer

R
S

C

S

Visualization Pipeline
Service (VPS)

Core Query
Service (CQS)

Operator Execution
Service (OES)

Monitoring
Service (MS)

Visual Client (VC)

Operator
Repository

Service (ORS)

R
Rendering Step

(Operator) M
Mapping Step

(Operator) F
Filtering & Merge Step

(Operator) S
Mobile Objects &

Buildings (Sources)
C

Client Application
(Sink)

Physical Layer
UMPC Client

(IntelA110 @ 800MHz,
1GB RAM)

PC
(AMD X2 @ 1,6GHz,

2GB RAM)

Buildings, Streets,
POIs

Bus Locations

FM

User-Relevant Application-Relevant Domain-Relevant System-Relevant

4.2

4.2

GPU-enabled PC
(AMD X2 @ 1,6GHz,

2GB RAM,
Nvidia-GF GO 7200)

22

Universität Stuttgart
SFB 627

Conclusion and Future Work

 Adaptation problem for non-trivial applications

 Identified requirements to satisfy needs of specific applications

 Based on non-trivial example of distributed visualization pipeline

 Heterogeneous system topologies, highly domain-specific operators, operators
connect their execution to explicit runtime and deployment restrictions

 Constraints!

 Deployment is done according to pre-defined requirements on different
levels (constraints)

 Future things to do

 Create suitable constraint-definition language to express complex constraint-links

 Optimize deployment and execution process in terms of costs

23

Universität Stuttgart
SFB 627

Finish… And Flowers for You!24

