
Towards Execution
Guarantees for Stream

Queries
Rafael J. Fernández-

Moctezuma, David Maier, and
Kristin A. Tufte

SSPS 2010
Acknowledgements: Lois Delcambre, Len Shapiro, Tim Chevalier, Jeremy
Steinhauer, CONACyT México (178258), NSF (IIS-0917349)

Continuous Queries

Data Stream Management Systems
allow evaluation of continuous queries
over data streams – data flows through
the query plan

Contrast with Database Management
Systems, where data sets are static
and queries are issued against them to
produce result sets

2

Msg1(timestamp,
sourceID, destinationID)

ω
LENGHT= 1 minute
SLIDE= 1 minute

Count
GROUP BY

WID, sourceID, destinationID

πWID, sourceID, destinationID

Msg1.WID = Msg2.WID,
Msg1.sourceID = Msg2.destinationID,
Msg1.destinationID = Msg2.sourceID

πWID, Msg1.sourceID,
Msg1.destinationID,

(Msg1.count / Msg2.count)
AS ratio

Msg2(timestamp,
sourceID, destinationID)

ω
LENGTH= 1 minute
SLIDE= 1 minute

Count
GROUP BY

WID, sourceID, destinationID

πWID ,sourceID, destinationID

1 2

1 2

21

3

Grouping
by

window
id and

process
pairs

Windowi
ng by
time

Windowe
d join

3

Assessing Data Stream
Progress

Data Streams are unbounded – don’t
know for sure when they end

“Average speed on US 26”. Let me
know when you’ve seen all cars. I may
not be willing to wait.

“Average speed on US 26 for
yesterday”. Let me know when you’ve
seen all data points for yesterday.

4

Punctuated Data Streams

How do we know for sure when you’ve
seen all data points in a stream?

May be out of order

Latency in result production,
correctness of the result, and efficient
use of resources are important.

Punctuations (Tucker et al.) are
delimiters in the stream that help track
progress 5

Punctuated Data Streams
<ts: 10:00:00 p.m., sensorID: 1, speed: 20>

<ts: 10:00:00 p.m., sensorID: 2, speed: 30>

<ts: 10:00:30 p.m., sensorID: 1, speed: 25>

<ts: 10:00:30 p.m., sensorID: 2, speed: 25>

[ts:≤10:00:30 p.m., sensorID: *, speed: *]

… <ts: 10:00:00 p.m., sensorID: 1, speed: 20>
<ts: 10:00:00 p.m., sensorID: 2, speed: 30>
<ts: 10:00:30 p.m., sensorID: 1, speed: 25>
<ts: 10:00:30 p.m., sensorID: 2, speed: 25>
[ts: *, sensorID: 1, speed: *]
… 6

More than one punctuation
style works…

Msg1(timestamp,
sourceID, destinationID)

ω
LENGHT= 1 minute
SLIDE= 1 minute

Count
GROUP BY

WID, sourceID, destinationID

πWID, sourceID, destinationID

Msg1.WID = Msg2.WID,
Msg1.sourceID = Msg2.destinationID,
Msg1.destinationID = Msg2.sourceID

πWID, Msg1.sourceID,
Msg1.destinationID,

(Msg1.count / Msg2.count)
AS ratio

Msg2(timestamp,
sourceID, destinationID)

ω
LENGTH= 1 minute
SLIDE= 1 minute

Count
GROUP BY

WID, sourceID, destinationID

πWID ,sourceID, destinationID

1 2

1 2

21

3

Can track
progress
by time, or by
process
termination.

How do we
know, before
execution, if a
query executes
successfully
given a specific
punctuation
style?

Punctuation on
process ID vs.
Punctuation on

time

7

Execution Guarantees

A query will execute successfully if:

Every correct output will be eventually
delivered by the query

No piece of state remains indefinitely
in any query operator

8

Framework

Tucker et al. Characterized how an
operator processes one punctuation

Frees up internal state

Emit output

Emit punctuation

We want to consider all the
punctuations in a stream

9

Punctuation Templates

Three styles : some tell you “up to value
x”, others about a specific item y, others
tell you about “anything”

A template captures these styles:

“+” for the “up to” pattern

 “#” for the “point” pattern

 “-” for the “anything” pattern

10

Punctuation Templates

[[a:+, b:#, c:-]]

describes punctuations such as:

[a:<‘11:30 p.m.’, b:26, c:*]

but not:

[a:*, b:26, c:*]

[a:<‘11:30 p.m.’, b:<26, c:*]

[a:<‘11:30 p.m.’, b:26, c:3] 11

Punctuation Scheme

Operators may be able to process more
than one template. A punctuation scheme
is a set of one or more punctuation
templates:

PS1 = {[[a:+,b:#,c:-]]}

PS2 = {[[a:+,b:-,c:-]], [[a:-,b:#,c:-]]}

12

PS1 = {[[a:+,b:#,c:-]]}

[a:<‘10:00 p.m.’,b:1,c:*]

[a:<‘10:00 p.m.’,b:2,c:*]

[a:<‘10:05 p.m.’,b:1,c:*]

[a:<‘10:05 p.m.’,b:2,c:*]

…

[a:<‘10:00 p.m.’,b:*,c:*]

[a:*,b:2,c:*]

[a:<‘10:05 p.m.’,b:1,c:*]

…

  obeys PS1

  does not obey PS1

A stream S obeys a scheme PS if:
•Any punctuation p in S conforms to
at least one punctuation template T
in PS
•For any tuple t in S, and each
template T in PS, there is a p in S
s.t. p conforms to T and t matches
p.

13

PS2 = {[[a:+,b:-,c:-]], [[a:-,b:#,c:-]]}

[a:<‘10:00 p.m.’,b:*,c:*]

[a:<‘10:05 p.m.’,b:*,c:*]

[a:*,b:1,c:*]

[a:<‘10:10 p.m.’,b:*,c:*]

[a:*,b:2,c:*]

[a:<‘10:15 p.m.’,b:*,c:*]

…

[a:<‘10:00 p.m.’,b:2,c:-]

…

  obeys PS2

  does not obey PS2

A stream S obeys a scheme PS if:
•Any punctuation p in S conforms to
at least one punctuation template T
in PS
•For any tuple t in S, and each
template T in PS, there is a p in S
s.t. p conforms to T and t matches
p.

14

Punctuation Contracts

Records of punctuation schemes
corresponding to each input and output
of an operator.

Two contracts for SELECT:

CT1 = <In={[[a:+,b:-,c:-]]},

 Out={[[a:+,b:-,c:-]]}>

CT2 = <In={[[a:+,b:-,c:-]],[[a:-,b:#,c:-]]},

 Out={[[a:+,b:-,c:-]],[[a:-,b:#,c:-]]}>

15

Execution Guarantees
For operator R with an input stream

that obeys the input punctuation
scheme in R’s contract CT, the
following guarantees hold:

1. R’s output stream obeys the output
punctuation scheme in CT

2. No piece of state remains is held by
R forever

3. R produces the maximal possible
correct output – no output is blocked
forever

16

JOIN characterization

I1, I2 = input schemas of JOIN.

J = set of joining attributes (J
in I1, J in I2).
L and R = sets of attributes
exclusive to inputs 1 and 2,
respectively

 (L = I1 – J, R = I2 - J).

General contract forms:

GC1 = <In1={[[L:-,J:+]]},In2={[[J:+,R:-]]},
Out = {[[L:-,J:+,R:-]]}>

GC2 = <In1={[[L:-,J:#]]},In2={[[J:#,R:-]]},
Out = {[[L:-,J:#,R:-]]}>

17

Full-query analysis

An accordance is a pairing of
selections of contracts from operator
contracts:

Stream1 Op1

Stream1 Offering = {C1}

Op1 Offering = {C2, C3}

Accordances: (C1, C2), (C1, C3)

A Consistent accordance is an
accordance where corresponding
input and output schemes match.

18

Full-query analysis

C1 = <Out={[[a:+, b:-]]}>

C2 = <In={[[a:#, b:-]]}, Out={[[a:#,b:-]]}>

C3 = <In={[[a:+, b:-]]}, Out={[[a:+,b:-]]}>

Stream1 Op1

Stream1 Offering = {C1}

Op1 Offering = {C2, C3}

Accordances: (C1, C2), (C1, C3)

One consistent accordance is found.

19

Finding an accordance as a
join problem

Contract offerings for each operator
are relations, each contract is a row

Offering for
operator A

In Out

{[[a:+, b:-]]} {[[a:+, b:-]]}

{[[a:#, b:-]]} {[[a:#, b:-]]}

Offering for
operator B

In Out

{[[a:+, b:-]]} {[[a:+, b:-]]}

If the query is
a DAG, can be
cast as a Full
Reducers
problem,
which admits
an efficient
solution.

20

Further Considerations 1

No permanent lodging
of state, but doesn’t
bound state at any
instance

Band join at right:
Needs to buffer 5
minutes of tuples

Data Density

r.A = s.A,
|r.ts – s.ts| <

5

r s

21

Further Considerations 2

Distribution of data values can also
affect operator memory needs

In windowed aggregate below, number
of distinct SourceIDs in 2 minutes
determines entries in Count

Count
GROUP BY WID,

SourceID

ω
LE

N
G

T
H

=
 2

 m
in

u
te

S
LID

E
=

 1
 m

in
u

te
Msg1(timestamp,

sourceID, destinationID)

22

Further Considerations 3

Even if an event is cleared from state, its
progeny may live on

Autocorrelation query below permits
chains of derived tuples

r.A = i.A,
|r.ts – i.ts| <

3

r

i

πi.A,
r.ts + 1 AS

i.ts

Duplica
teDuplica

te

UNIONπr.A AS
i.A

r.Ts AS i.ts

23

Further Considerations 4

Need to consider data outside of operator
state

“Reticent” select operator below stops
reading input once it produces its final
output

σr.A < 12r
Out = {[[a:+, b:-]]}

In = {[[a:+, b:-]]}

24

Further Considerations 5

Even reasonable operator implementations can
result in unbounded buffer growth

Evil query below has unbounded growth on r1
because of different consumption rates

r Duplica
te

r1.A = r2.A,
2 × r1.seq# =

r2.seq#

r1

r2

25

The Four D’s

Key properties in determining memory and CPU
use

Density: Items per logical time unit

Disorder: Specifically, how late can an item be

Distribution: Number and density of groups

Divergence: Offset in time stamps between
streams

26

Future Work

Extension to query processing styles in
which contextual information flows
contrary to the stream direction

Need to adjust punctuation density to
match data density (e.g., “you won’t
see more than 500 events without a
punctuation”)

Revisiting adaptivity in the light of the
four D’s. If you don’t address those,
you might not get much benefit. 27

