
Self-Stabilizing Master--Slave Token Circulation and

Efficient Size-Computation in a Unidirectional Ring

of Arbitrary Size

Wayne Goddard & Pradip K. Srimani

Clemson University, South Carolina

{goddard,srimani}@cs.clemson.edu

Self-Stabilization

Self-stabilization is a cost effective optimistic way of
providing tolerance from transient faults when temporary
unavailability of system is acceptable for a short period of
time. It is no longer necessary to assume a bound on the
number of failures.

Use local knowledge to achieve global objective.

Allow the system to start from an arbitrary initial global state
without global reset or external coordination (it is difficult to
power cycle the network to force it into a well defined initial
state)

Provide scalability; nodes can leave or enter the system with
relative ease.

Uniform code at each participating node (sometimes, a special
node is assumed)

2

Problem Statement

3

Recently, researchers have proposed a new model for self-stabilization. They

considered the problem of determining the number n of nodes in a ring

using constant space. Well, actually this is impossible, since even writing

down the value n requires O(log n) space. So, to obtain a “space-efficient”

algorithm, one node is designated that would determine the answer, but all

other nodes are required to use constant space. We call such an algorithm a

master–slave algorithm. These semi-uniform algorithms are closer to model

sensor or ad hoc networks where the sensor nodes are extremely resource

challenged and a base station or a cluster head needs to determine some

information.

We propose a new algorithm that computes the size of the ring at the master

node in O(n log n) time compared to O(n3) steps taken by the

existingalgorithm in [3] using the same computing paradigm.

4

Model of Execution

We focus here on a central daemon, also known as a serial

daemon. A central daemon picks a single arbitrary privileged

node to move (execute the rule’s action) at each step. In

contrast, the distributed daemon taps a nonempty subset of the

privileged nodes to move at each step. Our algorithms work

under both daemons.

The network has a unique master node, and all other nodes are

anonymous; thus the algorithms are semi-uniform.

We assume a unidirectional ring network, with the master

node labeled 0 and the other nodes in order labeled 1 through n

− 1. Any node i has a predecessor i − 1 and the master node 0

has its predecessor n − 1.

Master–Slave Token Circulation in Rings

5

In the AB algorithm, each node has a token variable ti that can be in one of three

states, say A, B, or C. The rule for any slave node i is trivial: If ti = ti−1, then ti =

ti−1. When node i changes its t-value, we say that it has received the token, and

any desired actions are performed then.

AB Algorithm:

Master Node 0:

if t0 = tn−1 then change t0 according to formula Update

Slave Node i:

if ti = ti−1 then ti = ti−1.

Update Rule:

Randomized Update:

Let t ∈ {A, B,C} − t uniformly at random.

Properties of AB Algorithm

6

Lemma 1 (a) The AB algorithm cannot terminate. (b) The number of privileged

nodes cannot increase.

Lemma 2 If the AB algorithm does not converge to a legal final configuration, then

the sequence of distinct values of t0 is periodic.

Theorem 1 Under Randomized Update, the expected time to convergence of one
circulating token is O (n log n) steps, regardless of the behavior of the daemon.

Remark: The AB algorithm handles a distributed daemon too. Indeed, if the

distributed daemon does not choose all the nodes simultaneously, then in any

unidirectional ring algorithm, this is equivalent to a sequence of individual moves

(move the front most node first). So the only issue with considering a distributed

daemon is what happens if the daemon selects all nodes simultaneously. This can, of

course, only happen if every node is privileged. As argued before, that state cannot

continue indefinitely.

Better Size Computation on Rings

7

Informal Description of Our Approach:

Our approach is based on the standard algorithm for counting a set of cells in a 1-tape

Turing Machine: compute the count one bit at a time. The master node determines the

ring-size one bit per round (in a right-to-left fashion) such that O(log n) circulations

of the token suffice, thereby significantly reducing the execution time.

Distributed Algorithm

8

The concept of the distributed algorithm is as follows.

Every slave node has an Alive bit. The master node starts by sending round a Reset

token that sets every node’s Alive bit to true. After that, the master sends out a

Counter token with a single bit.

The first round, this Counter token determines the parity of the number of nodes,

since every node toggles the Counter bit. Furthermore, the master node sends the

token out with Counter bit clear. Every node toggles the bit; but those nodes that set

the bit also clear their Alive bit.

The second time the Counter token circulates, it does the same thing, except that

nodes that are Dead simply pass on the Counter token unchanged. In this way, the

master node receives the parity of n/2 . And so on.

In log n rounds, the master node can calculate the total number of nodes. In order to

get the master to know that the process is complete, one adds another “Pristine” bit to

the token; this state is cleared by the first node to toggle the Counter bit. If the master

node gets the Pristine state back, then it knows all nodes are dead and the algorithm is

complete.

Data Structures at node i

9

A 3-state token variable ti that can have any of the three values A, B, or C (this

can be implemented by using only 2 bits).

A 4-state status variable statusi that can have any of four values Pristine, Reset,

Zero, or One (this can be implemented by using only 2 bits).

Each slave node i (i > 0) has a one-bit Boolean flag livei. We say that a slave node

i is alive if livei is true; otherwise, it is dead.

The unique master node (i = 0) has two integer variables count and pos to store

the size of the ring.

10

Conclusions

11

• Starting from an arbitrary legal configuration, the integer variable count at the master

node will contain the size n of the ring in at most 2(log2 n + 1) rounds (O(n log n)

steps).

• Our algorithm computes the size of the ring at the master node in O(n log n) time

compared to O(n3) steps taken by a recent algorithm in [3] using the same

computing paradigm.

• It seems likely that one should be able to obtain master– slave algorithms for other

problems in networks.

12

Thank You Very Much

Questions?

http://www.youtube.com/watch?v=bf3dKxof_9w
http://www.youtube.com/watch?v=bf3dKxof_9w
http://www.youtube.com/watch?v=bf3dKxof_9w

