
Detecting and Using 
Critical Paths at Runtime in 

Message Driven Parallel Programs

Isaac Dooley, Laxmikant V. Kale
Department of Computer Science

University of Illinois

idooley2@illinois.edu
kale@illinois.edu

12th Workshop on Advances in Parallel and Distributed Computational Models 
IPDPS

April 19, 2010

1

mailto:kale@illinois.edu
mailto:kale@illinois.edu


Motivation

• Critical paths historically have been used important in post-mortem 
(offline) parallel performance analysis.

• Can they be computed online in message driven parallel languages?

• Is critical path information useful in running parallel HPC programs?
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Critical Paths in Parallel Programs

• Existing algorithms for recording critical paths in a hybrid online/offline 
manner:

• J Hollingsworth. An online computation of critical path profiling. In SPDT ʼ96: Proceedings of the SIG- 
METRICS symposium on Parallel and distributed tools, pages 11–20, New York, NY, USA, 1996

• J Hollingsworth. Critical path profiling of message passing and shared-memory programs. Parallel and 
Distributed Systems, IEEE Transactions on, 9(10):1029– 1040, Oct 1998

• C Yang, B P Miller. Path Analysis for the Execution of Parallel and Distributed Programs. IEEE Transactions 
on Parallel and Distributed Systems, pages 1029 - 1040, Oct 1998

• M Schulz. Extracting critical path graphs from MPI applications. Cluster Computing, 2005, pages 1 – 10, 
Sep 2005

• For guiding expert post-mortem performance analysis

• For visualizing parallel program execution to gain understanding

3



Critical Paths in 
Message Driven Parallel Programs

• Message Driven Execution (as implemented in Charm++):

• Tasks invoke methods asynchronously

• An asynchronous method invocation results in:

• New local task in queue, or

• Message sent to remote processor, resulting in new task
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Example
Program Activity Graph

5

Legend

Task (Prefix)
Message

C

Processor 1

Processor 2

Processor 3

Processor 4

A

B

Program Order
Dependency

Time

• Critical path profiles represent a path through the Program Activity Graph 
(PAG) composed of computation and messages.



Program Activity Graph

6

In-Edge
(processor, 

Index)

2

Task Prefix 
Index

(2,2)
initial1

Processor 1

A

(1,1)3

In-Edge
(processor, 

Index)
Task Prefix 

Index

(1,1)
(1,1)

1
2

Processor 2

B

In-Edge
(processor, 

Index)

(3,1) or
(4,1)

1

2

Task Prefix 
Index

(1,1)

Processor 4

(1,2) or
(3,2) or

(4,2)
3

In-Edge
(processor, 

Index)
Task Prefix 

Index

(2,1)
(2,3)

1
2

Processor 3

C

Legend

Task (Prefix)
Message

C

Processor 1

Processor 2

Processor 3

Processor 4

A

B

Program Order
Dependency

Time
• The PAG can be recorded as a 

program runs in a distributed 
graph

• Path weights include 
computation time, but not 
message send time



• Record PAG as program runs

• Augment each message with:
• an identifier
• path length

• Record maximal incoming path for each task in a table
• Requires compiler support or code modifications

• Retrieve Critical Path for any task with a backwards 
traversal
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Finding Critical Paths



Implementation
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• Implemented in the Charm++ runtime system.

• Supports multiple languages:

• Charm++ 
• Structured Dagger
• Charisma

• Trickiness is in how multiple incoming dependencies are captured.

• Reductions
• User maintains knowledge of dependencies satisfied by earlier tasks
• Language specific dependency mechanisms



Costs of Recording Critical Paths
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• Cost of extra 8 bytes in message
• Cost of adding table entries for each task execution

• Cost of backwards traversal retrieval: Application Dependent
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• Microbenchmarks:



Use: Automatic Task Priorities
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• Automatically Tuning Task Priorities:

• OpenAtom Application

• Record critical path for 20 iterations, then switch to new priorities based 
on observed critical path.

• 10.2% speedup when prioritizing critical path task types



Uses: Phase Detection
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• Critical path is retrieved
• Frequently repeated subpaths are extracted
• Cheap!
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Uses: Performance Analysis
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• Visualization:



Uses: Filter Performance Data
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• Reducing volume of performance analysis data

• Filter out processors not on critical path

• Performance analyst only needs to manipulate & view fewer files



Conclusion
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• Our Contribution:

Critical paths can be recorded and used in message driven parallel 
programs at runtime for tuning message priorities.
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Handling Multiple Input Dependencies
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