Detecting and Using
Critical Paths at Runtime in
Message Driven Parallel Programs

Isaac Dooley, Laxmikant V. Kale
Department of Computer Science
University of lllinols

idooley2@illinois.edu
kale@illinois.edu

| 2th Workshop on Advances in Parallel and Distributed Computational Models
IFDIRS

April 19,2010

mailto:kale@illinois.edu
mailto:kale@illinois.edu

Motivation

» Critical paths historically have been used important in post-mortem
(offline) parallel performance analysis.

» Can they be computed online in message driven parallel languages!

* |s critical path information useful in running parallel HPC programs!?

Crrtical Paths in Parallel Programs

» Existing algorithms for recording critical paths in a hybrid online/oftline
manner:

J Hollingsworth. An online computation of critical path profiling. In SPDT ’96: Proceedings of the SIG-
METRICS symposium on Parallel and distributed tools, pages 11-20, New York, NY, USA, 1996

J Hollingsworth. Critical path profiling of message passing and shared-memory programs. Parallel and
Distributed Systems, IEEE Transactions on, 9(10):1029— 1040, Oct 1998

C Yang, B P Miller. Path Analysis for the Execution of Parallel and Distributed Programs. IEEE Transactions
on Parallel and Distributed Systems, pages 1029 - 1040, Oct 1998

M Schulz. Extracting critical path graphs from MPI applications. Cluster Computing, 2005, pages 1 — 10,
Sep 2005

» For guiding expert post-mortem performance analysis

* For visualizing parallel program execution to gain understanding

Crrtical Paths In
Message Driven Parallel Programs

* Message Driven Execution (as implemented in Charm++):
* lasks invoke methods asynchronously
* An asynchronous method invocation results in:
* New local task in queue, or

- Message sent to remote processor, resulting in new task

Example
Program Activity Graph

Processor 1

Legend

Processor 2 >
Message

Task (Prefix) D>

Processor 3
Program Order
Dependency

Processor 4

Time

» Critical path profiles represent a path through the Program Activity Graph
(PAG) composed of computation and messages.

Program Activity Graph

* The PAG can be recorded as a

program runs In a distributed
oraph

* Path weights include
computation time, but not
message send time

Processor 1

Processor 2

Processor 3

Processor 4

Legend

Task (Prefix)

_ >
Message

Program Order
Dependency

Processor 1

Processor 2

Task Prefix
Index

In-Edge

(processor,

Index)

Task Prefix
Index

In-Edge

Index)

(processor,

1

initial

1

(1,1)

2

(2,2)

(1,1)

Processor 3

(1,1)

Task Prefix
Index

In-Edge

(processor,

Index)

Processor 4

1

(2,1)

2

(2,3)

Task Prefix
Index

In-Edge

Index)

(processor,

3

(1,2) or
(3,2) or
(4,2)

1

(1,1)

2

(3,1) or
(4,1)

Finding Critical Paths

» Record PAG as program runs

* Augment each message with:
* an identifier
* path length

» Record maximal incoming path for each task in a table
» Requires compller support or code modifications

» Retrieve Critical Path for any task with a backwards
traversal

Implementation

* Implemented in the Charm++ runtime system.
» Supports multiple languages:

> (ARl R
» Structured Dagger
» Charisma

* Irickiness Is In how multiple Incoming dependencies are captured.
 Reductions

 User maintains knowledge of dependencies satisfied by earlier tasks
» Language specific dependency mechanisms

8

Costs of Recording Critical Paths

» Cost of extra 8 bytes In message
» Cost of adding table entries for each task execution

()]

(&)

= 4-Neighbor (4pe)
} Ring

SN

* Microbenchmarks:

— N w
|

Overhead of Recording PAG (Percentage)
o

| IIIII | | | | | |] 1 1 1111 IIIII
1000 10000
Tasks Per Second

- Cost of backwards traversal retrieval: Application Dependent

9

Use: Automatic lask Priorities

 Automatically Tuning Task Priorities:
« OpenAtom Application

 Record critical path for 20 rterations, then switch to new priorities based
on observed critical path.

* 10.2% speedup when prioritizing critical path task types

vvwbbbbbAAX

bklmnopopaqgr

XywbbbAAXxab
bbAxxyvwbbbbbAXxx
efggoggghijbbbbbkl

bbbbxxxyvwbbbb

defggggghijb
ibbbbbklImnopopgrbbbbstiuv

bbbxxyvwbbbb

|ON

Phase Detect

Uses:

bbcdefggggghij
bbbbxxx

(O epelileliie e
o<<os00->s
OO0 >00>£E323

d
)
+
O
S
2
)
L
S
7))
==
q®
@k
@
D)
7))
=
9
q®
)
@h
O
>
|_L
_
D)
=
=
L
|t
o

i)
S
0,

s

O
[]

* Critical path Is retrieved

Uses: Performance Analysis

* Visualization:

lime In Microseconds
275,547 473,627 671,706 871,939 1,070,019 1,270,251

s
o L B L b H o H W b H
PE1 [HEH

HE- -]
PE 3 l -l_ L1
PE 4 — T8 |_

PES -

PE 2

B Task prefixes along critical path
| ' Other tasks
T —

Uses: Filter Performance Data

 Reducing volume of performance analysis data
* Filter out processors not on critical path

* Performance analyst only needs to manipulate & view fewer files

Conclusion

« Our Contribution:

Crrtical paths can be recorded and used In message driven parallel
programs at runtime for tuning message priorities.

Thanks & Questions

Detecting and Using
Critical Paths at Runtime
in Message Driven Parallel Programs

Isaac Dooley, | axmikant V. Kale
Department of Computer Science
University of lllinois

| 2th Workshop on Advances in Parallel and Distributed Computational Models
ApIal s, 20 H0

Handling Mult

Processor 1

Processor 2

Processor 3

Processor 4

dle |In

ut De

BIS|A1IC

(Source Processor,
Source Index,
Cummulative Path Duration)

encles

maximum duration
iIncoming dependency
=(2,12,10.5)

