
Detecting and Using 
Critical Paths at Runtime in 

Message Driven Parallel Programs

Isaac Dooley, Laxmikant V. Kale
Department of Computer Science

University of Illinois

idooley2@illinois.edu
kale@illinois.edu

12th Workshop on Advances in Parallel and Distributed Computational Models 
IPDPS

April 19, 2010

1

mailto:kale@illinois.edu
mailto:kale@illinois.edu


Motivation

• Critical paths historically have been used important in post-mortem 
(offline) parallel performance analysis.

• Can they be computed online in message driven parallel languages?

• Is critical path information useful in running parallel HPC programs?

2



Critical Paths in Parallel Programs

• Existing algorithms for recording critical paths in a hybrid online/offline 
manner:

• J Hollingsworth. An online computation of critical path profiling. In SPDT ʼ96: Proceedings of the SIG- 
METRICS symposium on Parallel and distributed tools, pages 11–20, New York, NY, USA, 1996

• J Hollingsworth. Critical path profiling of message passing and shared-memory programs. Parallel and 
Distributed Systems, IEEE Transactions on, 9(10):1029– 1040, Oct 1998

• C Yang, B P Miller. Path Analysis for the Execution of Parallel and Distributed Programs. IEEE Transactions 
on Parallel and Distributed Systems, pages 1029 - 1040, Oct 1998

• M Schulz. Extracting critical path graphs from MPI applications. Cluster Computing, 2005, pages 1 – 10, 
Sep 2005

• For guiding expert post-mortem performance analysis

• For visualizing parallel program execution to gain understanding

3



Critical Paths in 
Message Driven Parallel Programs

• Message Driven Execution (as implemented in Charm++):

• Tasks invoke methods asynchronously

• An asynchronous method invocation results in:

• New local task in queue, or

• Message sent to remote processor, resulting in new task

4



Example
Program Activity Graph

5

Legend

Task (Prefix)
Message

C

Processor 1

Processor 2

Processor 3

Processor 4

A

B

Program Order
Dependency

Time

• Critical path profiles represent a path through the Program Activity Graph 
(PAG) composed of computation and messages.



Program Activity Graph

6

In-Edge
(processor, 

Index)

2

Task Prefix 
Index

(2,2)
initial1

Processor 1

A

(1,1)3

In-Edge
(processor, 

Index)
Task Prefix 

Index

(1,1)
(1,1)

1
2

Processor 2

B

In-Edge
(processor, 

Index)

(3,1) or
(4,1)

1

2

Task Prefix 
Index

(1,1)

Processor 4

(1,2) or
(3,2) or

(4,2)
3

In-Edge
(processor, 

Index)
Task Prefix 

Index

(2,1)
(2,3)

1
2

Processor 3

C

Legend

Task (Prefix)
Message

C

Processor 1

Processor 2

Processor 3

Processor 4

A

B

Program Order
Dependency

Time
• The PAG can be recorded as a 

program runs in a distributed 
graph

• Path weights include 
computation time, but not 
message send time



• Record PAG as program runs

• Augment each message with:
• an identifier
• path length

• Record maximal incoming path for each task in a table
• Requires compiler support or code modifications

• Retrieve Critical Path for any task with a backwards 
traversal

7

Finding Critical Paths



Implementation

8

• Implemented in the Charm++ runtime system.

• Supports multiple languages:

• Charm++ 
• Structured Dagger
• Charisma

• Trickiness is in how multiple incoming dependencies are captured.

• Reductions
• User maintains knowledge of dependencies satisfied by earlier tasks
• Language specific dependency mechanisms



Costs of Recording Critical Paths

9

• Cost of extra 8 bytes in message
• Cost of adding table entries for each task execution

• Cost of backwards traversal retrieval: Application Dependent

1000 10000
Tasks Per Second

0

1

2

3

4

5

6

O
ve

rh
ea

d 
of

 R
ec

or
di

ng
 P

AG
 (P

er
ce

nt
ag

e)

4-Neighbor (4pe)
Ring

• Microbenchmarks:



Use: Automatic Task Priorities

10

• Automatically Tuning Task Priorities:

• OpenAtom Application

• Record critical path for 20 iterations, then switch to new priorities based 
on observed critical path.

• 10.2% speedup when prioritizing critical path task types



Uses: Phase Detection

11

• Critical path is retrieved
• Frequently repeated subpaths are extracted
• Cheap!

a b b b b b b c d e f g g g g g h i j b b b b b k l m n o p o p q r b b b b s t i u v w b b b b x x y v w b b b b 
b A A x y v w b b b b x x x y v w b b b b b x x x y v w b b b b b x x x a b b b b b b c d e f g g g g g h i j b 
b b b b b k l m n o p o p q r b b b b s t i u v w b b b b b A A x y v w b b b b b A A x y v w b b b b b A A x 
y v w b b b b b x x x y v w b b b b b x x x a b b b b b b c d e f g g g g g h i j b b b b b k l m n o p o p q r 
b b b b s t i u v w b b b b x x y v w b b b A A x y v w b b b b x x x y v w b b b b A x x y w b b b A A x a b 
b b b b b c d e f g g g h i j b b b k l m n o p o p q r b b b b s t i u v w b b b b b A x x y v w b b b b b A x x 
y v w b b b b b x x x y v w b b b b x x x y w b b b b x x A a b b b b b b c d e f g g g g g h i j b b b b b k l 
m n o p o p q r b b b b s t i u v w b b b b x x y v w b b b b x x x y v w b b b b x x x y v w b b b b x x x y v 
w b b b b b x x x a b b b b b b c d e f g g g g g h i j b b b b b k l m n o p o p q r b b b b s t i u v w b b b b 



Uses: Performance Analysis

12

• Visualization:



Uses: Filter Performance Data

13

• Reducing volume of performance analysis data

• Filter out processors not on critical path

• Performance analyst only needs to manipulate & view fewer files



Conclusion

14

• Our Contribution:

Critical paths can be recorded and used in message driven parallel 
programs at runtime for tuning message priorities.



Thanks & Questions

Detecting and Using 
Critical Paths at Runtime 

in Message Driven Parallel Programs 

Isaac Dooley, Laxmikant V. Kale
Department of Computer Science

University of Illinois

12th Workshop on Advances in Parallel and Distributed Computational Models 
April 19, 2010

15



Handling Multiple Input Dependencies

16

Processor 1

Processor 2

Processor 4

(1,17,7.3)

(2,12,10.5)

(4,19,9.1)

(Source Processor, 
Source Index, 

Cummulative Path Duration)

maximum duration 
incoming dependency

= (2,12,10.5)

Processor 3


