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Motivation

» Critical paths historically have been used important in post-mortem
(offline) parallel performance analysis.

» Can they be computed online in message driven parallel languages!

* |s critical path information useful in running parallel HPC programs!?




Crrtical Paths in Parallel Programs

» Existing algorithms for recording critical paths in a hybrid online/oftline
manner:

J Hollingsworth. An online computation of critical path profiling. In SPDT ’96: Proceedings of the SIG-
METRICS symposium on Parallel and distributed tools, pages 11-20, New York, NY, USA, 1996

J Hollingsworth. Critical path profiling of message passing and shared-memory programs. Parallel and
Distributed Systems, IEEE Transactions on, 9(10):1029— 1040, Oct 1998

C Yang, B P Miller. Path Analysis for the Execution of Parallel and Distributed Programs. IEEE Transactions
on Parallel and Distributed Systems, pages 1029 - 1040, Oct 1998

M Schulz. Extracting critical path graphs from MPI applications. Cluster Computing, 2005, pages 1 — 10,
Sep 2005

» For guiding expert post-mortem performance analysis

* For visualizing parallel program execution to gain understanding




Crrtical Paths In
Message Driven Parallel Programs

* Message Driven Execution (as implemented in Charm++):
* lasks invoke methods asynchronously
* An asynchronous method invocation results in:
* New local task in queue, or

- Message sent to remote processor, resulting in new task
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» Critical path profiles represent a path through the Program Activity Graph
(PAG) composed of computation and messages.




Program Activity Graph

* The PAG can be recorded as a

program runs In a distributed
oraph

* Path weights include
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Finding Critical Paths

» Record PAG as program runs

* Augment each message with:
* an identifier
* path length

» Record maximal incoming path for each task in a table
» Requires compller support or code modifications

» Retrieve Critical Path for any task with a backwards
traversal




Implementation

* Implemented in the Charm++ runtime system.
» Supports multiple languages:

> (ARl R
» Structured Dagger
» Charisma

* Irickiness Is In how multiple Incoming dependencies are captured.
 Reductions

 User maintains knowledge of dependencies satisfied by earlier tasks
» Language specific dependency mechanisms
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Costs of Recording Critical Paths

» Cost of extra 8 bytes In message
» Cost of adding table entries for each task execution
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- Cost of backwards traversal retrieval: Application Dependent
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Use: Automatic lask Priorities

 Automatically Tuning Task Priorities:
« OpenAtom Application

 Record critical path for 20 rterations, then switch to new priorities based
on observed critical path.

* 10.2% speedup when prioritizing critical path task types
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* Critical path Is retrieved




Uses: Performance Analysis

* Visualization:
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Uses: Filter Performance Data

 Reducing volume of performance analysis data
* Filter out processors not on critical path

* Performance analyst only needs to manipulate & view fewer files




Conclusion

« Our Contribution:

Crrtical paths can be recorded and used In message driven parallel
programs at runtime for tuning message priorities.
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