
Modeling and Analysis of Real -Time Systems
with Mutex Components

APDCM’10

Guoqiang Li1, Xiaojuan Cai1,Shoji Yuen2

1BASICS, Shanghai Jiao Tong University

2Graduate School of Information Science, Nagoya University

19th, April. 2010

1 / 19
APDCM’10

Backgrounds and Aims

Formal models for complex real-timed systems (e.g. timed
automata).

A real-time system consists of several functionally independent
components that interact with each other, e.g. processors,
controllers, various chips, etc.

Synchronization is modeled by parallel composition of timed
automata [RTSS’95]
Mutex . . .

In synthesis of a whole system, the “global” control of
components is a key issue in design.

Whether such a synthesis is decidable?

2 / 19
APDCM’10

Timed Automata [Alur & Dill TCS 94]

x ≤ 6 x ≤ 5

a, x
:=

0, y
:=

0y
>

25

x ≥ 5, y ≤ 25, x := 0

b, x := 0, y := 0

y
>

30

x ≥ 6, y ≤ 30, x := 0

1

3 / 19
APDCM’10

Parallel Composition [Wang Yi et. al. RTSS’95]

Actions are divided into two disjoint sets Σ = E ∪ H, for external
and internal actions respectively.

External actions E are partitioned to two disjoint sets
E = Eo ∪ Ei , for triggering symbols, ranged over by a!, b!, . . .,
and triggered symbols, ranged over by a?, b?,

appearing in the guards of an automaton. As an example, consider Fig. 2. The figure
shows the possible regions in each location of an automaton with two clocks � and �.
The largest number compared to � is 3, and the largest number compared to � is 2. In
the figure, all corner points (intersections), line segments, and open areas are regions.
Thus, the number of possible regions in each location of this example is 60.

A more efficient representation of the state-space for timed automata is based on the
notion of zone and zone-graphs [Dil89,HNSY92,YL93,YPD94,HNSY94]. In a zone
graph, instead of regions, zones are used to denote symbolic states. This in practice
gives a coarser and thus more compact representation of the state-space. The basic
operations and algorithms for zones to construct zone-graphs are described in Section 4.
As an example, a timed automaton and the corresponding zone graph (or reachability
graph) is shown in Fig. 3. We note that for this automaton the zone graph has only 8
states. The region-graph for the same example has over 50 states.

off

dim

bright

press?
x:=0

x<=10
press?

x>10
press?

press?

� off� � � ��

�off� � � �	

�off� � � ��	

�dim� � � �	

�dim� � � �	�bright� � � �	

�bright� �
 ��	

�bright� � � �	

Fig. 3. A Timed Automaton and its Zone Graph

A zone is a clock constraint. Strictly speaking, a zone is the solution set of a clock
constraint, that is the maximal set of clock assignments satisfying the constraint. It
is well-known that such sets can be efficiently represented and stored in memory as
DBMs (Difference Bound Matrices) [Bel57]. For a clock constraint �, let ��
 denote
the maximal set of clock assignments satisfying �. In the following, to save notation,
we shall use � to stand for ��
 without confusion. Then 	��� denotes the set of zones.

A symbolic state of a timed automaton is a pair �� �� representing a set of states of the
automaton, where is a location and � is a zone. A symbolic transition describes all
the possible concrete transitions from the set of states.

Definition 7 Let � be a zone and � a set of clocks. We define�� � ���� �� � �� � �
��� and ���� � ��� �� 	
� � � � ��. Let� denote the symbolic transition relation
over symbolic states defined by the following rules:

– �� ���
�
� �� � ���

�

x < 10

p
ress!,

x
:=

0

press!, x ≥ 10, x := 0

1

4 / 19
APDCM’10

Why Need Controller Automata?

Usually, mutex can be implemented by synchronization.

However, in real-time system, time in an awaited component will
elapse when it hangs up.

There are three relations for two mutex components:

Competition e.g., Reading/Writing a shared buffer
Preemption and Resumption e.g., Interrupt

Controller automata provide global controls among a group of
timed automata.

5 / 19
APDCM’10

Controller Automata

Controller automata provide transitions for timed automata that
represents different components.

There are three kinds of transitions, push, pop and internal
actions.

x1 < 2

x1 < 2

W
T

P

x≥
2,

x
1

:=
0

WTP , x1 ≥ 2 ∧ y1 ≤ 25, x1 := 0

x2 < 3

x2 < 3

R
D

P

x
2 ≥

3,
x

2
:=

0

RDP , x2 ≥ 3 ∧ y2 ≤ 30, x2 := 0

0

release!

require?

release!

require?

=⇒∈ δint

6 / 19
APDCM’10

An Example: Reading/Writing with Priority

x1 < 2

x1 < 2

I. II.

W
T

P

x
1 ≥

2,
x

1
:=

0

WTP , x1 ≥ 2 ∧ y1 ≤ 25, x1 := 0

x2 < 3

x2 < 3

ERR

R
D

P

x
2 ≥

3,
x

2
:=

0

y
2 ≥

20

RDP , x2 ≥ 3 ∧ y2 ≤ 30, x2 := 0

0

releaseW !

requireW ?

releaseR!

requireR?

requireW ?

: δpush : δpop

7 / 19
APDCM’10

Time Lag in Timed Automata

When a timed automaton is preempted by another one, the
system will stop running current timed automaton, store the
current status, and begin to run the latter timed automaton.

A time lag adds a location and a fresh clock to wait a certain
time when preempted by another timed automata.

x ≤ 6

x
:=

0, y
:=

0y
>

25

x ≥ 5, y ≤ 25, x := 0

x := 0, y := 0

y
>

30

x ≥ 6, y ≤ 30, x := 0

1

8 / 19
APDCM’10

Time Lag in Timed Automata

When a timed automaton is preempted by another one, the
system will stop running current timed automaton, store the
current status, and begin to run the latter timed automaton.

A time lag adds a location and a fresh clock to wait a certain
time when preempted by another timed automata.

x ≤ 6 xp ≤ 0∨
xp ≥ t

x
:=

0, y
:=

0, x
p :=

0

y
>

25

x ≥ 5, y ≤ 25, x := 0, xp := 0

x := 0, y := 0

y
>

30

x ≥ 6, y ≤ 30, x := 0

xp ≤ t

xp ≥ t

1

9 / 19
APDCM’10

Running Controller Automata

1

0

p
a
t?

,x
:=

0

p
a
t?

,
x

<
2

2

tr
ig

ge
r p

!,
x
≥ 2,

x
:=

0

x
>

25

3

p
a
t?

,x
:=

0

pa
t?

, x
<

2

4
triggerq!, 2 ≤ x ≤ 25,x := 0

5

p
a
t?,

x
:=

0

trig
g
er

q !,2≤
x≤

30,
x

:=
0

pat?,
x

<
2

x
>

30

xrun ≤ 150

0

0

1

xrun ≤ 50

turn?,�, ∅

apop�, ∅

bpo
p
�, ∅

pa
t?,
�, ∅ tu

rn?,�
,∅

c
p
o
p ,�

,∅

: δpush

: δpop

1

10 / 19
APDCM’10

Running Controller Automata

1

0

p
a
t?

,x
:=

0

p
a
t?

,
x

<
2

2

tr
ig

ge
r p

!,
x
≥ 2,

x
:=

0

x
>

25

3

p
a
t?

,x
:=

0

pa
t?

, x
<

2

4
triggerq!, 2 ≤ x ≤ 25,x := 0

5

p
a
t?,

x
:=

0

trig
g
er

q !,2≤
x≤

30,
x

:=
0

pat?,
x

<
2

x
>

30

xrun ≤ 150

0

0

1

xrun ≤ 50

turn?,�, ∅

apop�, ∅

bpo
p
�, ∅

pa
t?,
�, ∅ tu

rn?,�
,∅

c
p
o
p ,�

,∅

: δpush

: δpop

(S0, 0)

1

11 / 19
APDCM’10

Running Controller Automata

1

0

p
a
t?

,x
:=

0

p
a
t?

,
x

<
2

2

tr
ig

ge
r p

!,
x
≥ 2,

x
:=

0

x
>

25

3

p
a
t?

,x
:=

0

pa
t?

, x
<

2

4
triggerq!, 2 ≤ x ≤ 25,x := 0

5

p
a
t?,

x
:=

0

trig
g
er

q !,2≤
x≤

30,
x

:=
0

pat?,
x

<
2

x
>

30

xrun ≤ 150

0

0

1

xrun ≤ 50

turn?,�, ∅

apop�, ∅

bpo
p
�, ∅

pa
t?,
�, ∅ tu

rn?,�
,∅

c
p
o
p ,�

,∅

: δpush

: δpop

(S0, 0)

1

12 / 19
APDCM’10

Running Controller Automata

1

0

p
a
t?

,x
:=

0

p
a
t?

,
x

<
2

2

tr
ig

ge
r p

!,
x
≥ 2,

x
:=

0

x
>

25

3

p
a
t?

,x
:=

0

pa
t?

, x
<

2

4
triggerq!, 2 ≤ x ≤ 25,x := 0

5

p
a
t?,

x
:=

0

trig
g
er

q !,2≤
x≤

30,
x

:=
0

pat?,
x

<
2

x
>

30

xrun ≤ 150

0

0

1

xrun ≤ 50

turn?,�, ∅

apop�, ∅

bpo
p
�, ∅

pa
t?,
�, ∅ tu

rn?,�
,∅

c
p
o
p ,�

,∅

: δpush

: δpop

(S0, 0)

1

13 / 19
APDCM’10

Running Controller Automata

1

0

p
a
t?

,x
:=

0

p
a
t?

,
x

<
2

2

tr
ig

ge
r p

!,
x
≥ 2,

x
:=

0

x
>

25

3

p
a
t?

,x
:=

0

pa
t?

, x
<

2

4
triggerq!, 2 ≤ x ≤ 25,x := 0

5

p
a
t?,

x
:=

0

trig
g
er

q !,2≤
x≤

30,
x

:=
0

pat?,
x

<
2

x
>

30

xrun ≤ 150

0

0

1

xrun ≤ 50

turn?,�, ∅

apop�, ∅

bpo
p
�, ∅

pa
t?,
�, ∅ tu

rn?,�
,∅

c
p
o
p ,�

,∅

: δpush

: δpop

(S0, 0)

1

14 / 19
APDCM’10

Running Controller Automata

1

0

p
a
t?

,x
:=

0

p
a
t?

,
x

<
2

2

tr
ig

ge
r p

!,
x
≥ 2,

x
:=

0

x
>

25

3

p
a
t?

,x
:=

0

pa
t?

, x
<

2

4
triggerq!, 2 ≤ x ≤ 25,x := 0

5

p
a
t?,

x
:=

0

trig
g
er

q !,2≤
x≤

30,
x

:=
0

pat?,
x

<
2

x
>

30

xrun ≤ 150

0

0

1

xrun ≤ 50

turn?,�, ∅

apop�, ∅

bpo
p
�, ∅

pa
t?,
�, ∅ tu

rn?,�
,∅

c
p
o
p ,�

,∅

: δpush

: δpop

(S1, 3)

(S0, 0)

1

15 / 19
APDCM’10

Running Controller Automata

1

0

p
a
t?

,x
:=

0

p
a
t?

,
x

<
2

2

3′

tr
ig

ge
r p

!,
x
≥ 2,

x
:=

0

x
>

25

3

p
a
t?

,x
:=

0

pa
t?

, x
<

2

4
triggerq!, 2 ≤ x ≤ 25,x := 0

5

p
a
t?,

x
:=

0

trig
g
er

q !,2≤
x≤

30,
x

:=
0

pat?,
x

<
2

x
>

30

xrun ≤ 150

0

0

1

xrun ≤ 50

turn?,�, ∅

apop�, ∅

bpo
p
�, ∅

pa
t?,
�, ∅ tu

rn?,�
,∅

c
p
o
p ,�

,∅

: δpush

: δpop

(S0, 0)

1

16 / 19
APDCM’10

Decidability Problems of Controller Automata

Some comments...

controller automata are not beyond timed (pushdown) automata...
controller automata are stopwatch pushdown automata...

Controller automata are less expressive than stopwatch
automata

Fact. the frozen clocks are kept zero in CA.

The decidability problems (e.g. reachability problem) of
controller automata are in general undecidable.

Infinite insertion of fresh clocks and control locations.

With a strict partial order on the state, an ordered controller
automaton can be translated to a timed automaton.

17 / 19
APDCM’10

Conclusion

Controller automata are introduced, to perform global control on
complex real-time systems.

Analysis techniques (e.g. reachability) of controller automata are
investigated.

Future work:

Theoretical approaches: to investigate the languages category
recognized by controller automata.
Practical approaches: to verify properties for complex real-time
systems, e.g. liveness
Implementation work: translate an OCA to a timed automaton
recognized by UPPAAL.

18 / 19
APDCM’10

Thank You!
li.g@sjtu.edu.cn

19 / 19
APDCM’10

