Delivering on the Multi-Core
Promise

Kunle Olukotun

Stanford University
March 2007

« Sun Niagara 2
+ 8 cores x 8 threads = 64

threads
+ Low latency data sharing
+ High throughput/Watt
L2 12§ L2§ 12§ L2§ L2§ L2§ L2 J Jnp
Full Cross Bar « Commercial servers
¢+ Abundant request level
CO C1 C2 C3 C4 C5 Ce C7 parallelism

#eu | [Fru) PP | PPy | el |Feu| [P0 | FPU

NIU Sys IIF
(E-net+) Buffer Switch Core

2% 10GE Ethernet x8 @2 5GHz

+ Performance/Watt important
« Scientific and Al

+ Abundant data-level parallelism
¢+ Matrix, ML, SVM
+ Performance/Watt important

By 2010, software developers will face...

CPU’s with:
+ 20+ cores
¢+ 100+ hardware threads

¢+ Deep memory hierarchies
GPU'’s with general computing capabilities

Parallel programming gap: Yawning divide between the
capabilities of today’s programmers, programming languages,
models, and tools and the challenges of future parallel architectures
and applications

Clearly, we need to do more work
+ Automatic compilation will not scale to hundreds of threads

Shared Memory vs. Message
Passing

+ Lots of discussion in 90’s with

MPPs Plot of top 500 supercomputer sites

. : over a decade
= SM much easier programming

model

= Performance similar, but MP
much better for some apps

= MP hardware is simpler
+ Message passing won

= Most machines > 100
processors use message
passing 200

= MPI the defacto standard
¢ Programmer productivity sufferso

= |t takes too long to do
“computational science” 0

= Architectural knowledge
required to tune performance Uniprocessors

Single Instruction multiple data (SIMD)

500

400

300

T T T T T T I T |
B BHA A DB B B B 97 97 VB B P 9V 00

Cluster
(network of
workstations)

Cluster
(network of
SMPs)

Massively
parallel
processors
(MPPs)

Shared-
memory
multiprocessors
(SMPs)

Very High-Level Programming
Paradigms

Need new parallel programming paradigms
+ Raise level of abstraction
+ Domain specific programming languages
¢+ Ease programming and extraction of parallelism
Map-Reduce
¢ Data parallelism (data mining, machine learning)
¢+ CMPs or clusters
SQL
¢ Information data management
Synchronous Data Flow
+ Streaming computation
¢+ Telecom, DSP and Networking
Matlab
+ Matrix based computation
+ Scientific computing
Stitch together with scripting (Python, Ruby)

Java and C++
Streams

*

L 4
4
4

Beyond message passing

Data parallelism

Explicitly managed data transfers

Maximize use of memory and network bandwidth

Transactions

*

*
*
*

Beyond shared memory

Thread-level parallelism

Eliminate locking problems and manual synchronization
Structured parallel programming

Transactional Memory

 Locks are broken

+ Performance — correctness tradeoff
= Coarse-grain locks: serialization
= Fine-grain locks: deadlocks, livelocks, races, ...

+ Cannot easily compose lock-based code

* Programmer specifies large, atomic tasks

¢ atomic { some_work; }

¢ Multiple objects, unstructured control-flow, ...

+ Declarative: user simply specifies, system implements details
« TM simplifies parallel programming

+ Parallel algorithms: non-blocking sync with coarse-grain code

= Performance = fine grain locks
¢+ Seguential algorithms: speculative parallelization

« Atomicity & isolation are generally useful

+ For debugging, checkpointing, exception handling, garbage
collection, security, speculation ...

* These may be TM'’s initial “killer apps”
« But they also change the requirements
« Cheap transactions for pervasive use

o “All transactions, all the time”
+ Stanford Transactional Coherence & Consistency (TCC)

