
Delivering on the Multi-Core 
Promise

Kunle Olukotun

Stanford University
March 2007



Good News: High Throughput

• Sun Niagara 2
8 cores x 8 threads = 64 
threads
Low latency data sharing
High throughput/Watt

• Commercial servers
Abundant request level
parallelism
Performance/Watt important

• Scientific and AI
Abundant data-level parallelism
Matrix, ML, SVM
Performance/Watt important



Bad News: Parallel Programming Gap

• By 2010, software developers will face…
• CPU’s with:

20+ cores
100+ hardware threads
Deep memory hierarchies

• GPU’s with general computing capabilities
• Parallel programming gap: Yawning divide between the 

capabilities of today’s programmers, programming languages, 
models, and tools and the challenges of future parallel architectures 
and applications

• Clearly, we need to do more work
Automatic compilation will not scale to hundreds of threads



Shared Memory vs. Message 
Passing

Lots of discussion in 90’s with 
MPPs

SM much easier programming 
model
Performance similar, but MP 
much better for some apps
MP hardware is simpler

Message passing won
Most machines > 100 
processors use message 
passing
MPI the defacto standard

Programmer productivity suffers
It takes too long to do 
“computational science”
Architectural knowledge 
required to tune performance

93 93 94 94 95 95 96 96 97 97 98 98 99 99 00

500

400

300

200

100

0

Single Instruction multiple data (SIMD)

Cluster
(network of
workstations)
Cluster
(network of
SMPs)

Massively
parallel
processors
(MPPs)

Shared-
memory
multiprocessors
(SMPs)

Uniprocessors

Plot of top 500 supercomputer sites
over a decade



Very High-Level Programming 
Paradigms

• Need new parallel programming paradigms
Raise level of abstraction
Domain specific programming languages
Ease programming and extraction of parallelism

• Map-Reduce
Data parallelism (data mining, machine learning)
CMPs or clusters

• SQL
Information data management

• Synchronous Data Flow
Streaming computation
Telecom, DSP and Networking

• Matlab
Matrix based computation
Scientific computing

• Stitch together with scripting (Python, Ruby)



Parallelism Under the Covers

• Java and C++
• Streams

Beyond message passing
Data parallelism
Explicitly managed data transfers
Maximize use of memory and network bandwidth

• Transactions
Beyond shared memory
Thread-level parallelism
Eliminate locking problems and manual synchronization
Structured parallel programming



Transactional Memory 

• Locks are broken
Performance – correctness tradeoff

Coarse-grain locks: serialization
Fine-grain locks: deadlocks, livelocks, races, …

Cannot easily compose lock-based code
• Programmer specifies large, atomic tasks 

atomic { some_work; }
Multiple objects, unstructured control-flow, …
Declarative: user simply specifies, system implements details

• TM simplifies parallel programming
Parallel algorithms: non-blocking sync with coarse-grain code

Performance = fine grain locks
Sequential algorithms: speculative parallelization



Beyond Concurrency Control 

• Atomicity & isolation are generally useful
For debugging, checkpointing, exception handling, garbage 
collection, security, speculation …

• These may be TM’s initial “killer apps”
• But they also change the requirements
• Cheap transactions for pervasive use
• “All transactions, all the time”

Stanford Transactional Coherence & Consistency (TCC)


