
IPDPS 2003 Tutorials
17th International Parallel and Distributed Processing Symposium
Tuesday, April 22nd & Saturday, April 26th – Nice Acropolis Convention Center – Nice, France

Tutorial 1 – Tuesday Morning
April 22, 2003
Introduction to Performance Tools
Development: Build Your Own Tools!

Luiz DeRose
IBM T.J. Watson Research Center, ACTC
Bernd Mohr
Research Centre Julich, ZAM

%Introductory–20 •••• %Intermediate–60 •••• %Advanced–20

Description: Application developers are facing new and
more intricate performance tuning and optimization
problems as parallel architectures become more
complex. Hence, users of high-performance computing
systems normally complain that it is difficult to achieve a
good performance for their application and are
constantly asking for more and better performance
analysis tools. However, the availability of tools
development resources across the industry is shrinking
rapidly because development of performance tools is
complex and generally not profitable. In summary, more
performance tools are needed, but fewer tools can be
created by the industry. In this tutorial we present an
overview of the major issues, techniques, and re-
sources in performance tools development. Our goals
are twofold: first, we will provide enough information,
such that users who need specialized tools could
attempt to do in-house development, in order to fulfill
their needs. Second, we will discuss open problems in
the area for researchers and students interested in
working in the field of performance tools. Areas covered
will include instrumentation, performance measurement,
performance data representation, analysis, and
visualization techniques.

Tutorial 2 – Tuesday Afternoon
April 22, 2003
Object-Oriented Middleware and Components for the
Grid: Java, Corba Techniques and Tools

Denis Caromel
University Nice Sophia Antipolis, INRIA-CNRS-IUF
Christian Perez
IRISA INRIA

%Introductory–20 •••• %Intermediate–60 •••• %Advanced–20

Description: Object technology and middleware are
increasingly used within parallel and distributed
computing. At the same time, components are
becoming a very effective tool for the composition and
deployment of business applications. While the
difficulties to actually program and deploy on the Grid
have been, to a great extend, acknowledged,
components technology is in the process of bringing
many advances for such parallel programming. The aim
of this course is to explain and detail this evolution.

The course objectives are:

! to explain the main principles of component

technology,
! to explain how object-oriented middleware can be

used for parallel and distributed programming,
! to state and to detail how object-oriented

middleware, together with components turn out to
be very effective for the Grid.

The course is based on widespread, industrial
languages and frameworks, such as Java, Corba, CCM.

Tutorial 3 – Saturday, Full Day
April 26, 2003
Programming in the Distributed Shared-
memory Model

Tarek El-Ghazawi
George Washington University
Bob Numrich
Minnesota Supercomputing Institute
Dan Bonachea
University of California, Berkeley

%Introductory–30 •••• %Intermediate–50 •••• %Advanced–20

Description: The distributed shared-memory
programming paradigm has been lately getting rising
attention. Recent developments have resulted in viable
distributed shared memory languages that are gaining
vendors' support, and several early compilers have been
developed. This programming model has the potential
of achieving a balance between ease-of-programming
and performance. As in the shared-memory model,
programmers need not to explicitly specify whether
accesses are local or remote. Meanwhile, programmers
can exploit data locality in distributed memory systems
using an abstract model that can enable program
portability.

In this tutorial, we present the fundamental concepts
associated with the distributed shared-memory
programming model. These will include execution
models, synchronization, workload distribution, and
memory consistency. We then introduce the syntax and
semantics of three parallel programming language
instances with growing interest. These are the Unified
Parallel C or UPC, which is developed by a consortium
of academia, industry, and government; Co-Array
FORTRAN, which is mainly developed at Cray Inc.; and
Titanium, a JAVA implementation from UCB. It will be
shown through experimental case studies that optimized
distributed shared memory programs can perform at
least as good as message passing codes, without much
departure from the ease of programming of the shared
memory model.

